Skip to main content
Log in

Rheologic Behavior of Osteoarthritic Synovial Fluid after Addition of Hyaluronic Acid: A Pilot Study

  • Original Article
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Viscosupplementation is a symptomatic treatment of osteoarthritis (OA) intended to restore rheologic homeostasis of the synovial fluid by injecting hyaluronic acid intraarticularly. Despite the long history of this therapy, little is known about its mechanisms of action and differences between commercial preparations. We investigated the rheologic behavior of OA synovial fluid with time, when stored at 4°C, before and after the addition of two hyaluronic acid commercial preparations (linear and cross-linked). Thirteen OA synovial fluids were stored at 4°C and assayed using steric exclusion chromatography, which allows hyaluronic acid to be separated from the remaining pool of proteins and its molecular weight and concentration to be determined without any pretreatment and calibration. The synovial fluid rheology also was studied in vitro, before and after addition of two viscosupplements, over 6 weeks. The non-Newtonian behavior of synovial fluid throughout followup appears to be the result of loose interactions between proteins and hyaluronic acid. When mixed with the linear hyaluronic acid, synovial fluid becomes less non-Newtonian whereas the non-Newtonian behavior was reinforced when mixed with the cross-linked hyaluronic acid. The rheology was nearly unchanged for all synovial fluids over 6 weeks. Our preliminary trial shows it is possible to study synovial fluid, stored at 4°C, over a long time and suggests the enzymatic degradation of hyaluronic acid is negligible under these experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adam N, Ghosh P. Hyaluronan molecular weight and polydispersity in some commercial intra-articular injectable preparations and in synovial fluid. Inflamm Res. 2001;50:294–299.

    Article  PubMed  CAS  Google Scholar 

  2. Adams ME, Lussier AJ, Peyron JG. A risk-benefit assessment of injections of hyaluronan and its derivatives in the treatment of osteoarthritis of the knee. Drug Saf. 2000;23:115–130.

    Article  PubMed  CAS  Google Scholar 

  3. Al-Assaf S, Phillips GO, Deeble DJ, Parsons B, Starnes H, Von Sonntag C. The enhanced stability of the crosslinked hylan structure to hydroxyl (OH) radicals compared with the uncrosslinked hyaluronan. Radiat Phys Chem. 1995;46:207–217.

    Article  CAS  Google Scholar 

  4. Bagga H, Burkhardt D, Sambrook P, March L. Long term effects of intraarticular hyaluronan on synovial fluid in osteoarthritis of the knee. J Rheumatol. 2006;33:946–950.

    PubMed  CAS  Google Scholar 

  5. Balazs EA. Analgesic effect of elastoviscous hyaluronan solutions and the treatment of arthritic pain. Cells Tissues Organs. 2003;174:49–62.

    Article  PubMed  CAS  Google Scholar 

  6. Balazs EA. Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results. Surg Technol Inter. 2004;12:278–289.

    Google Scholar 

  7. Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl. 1993;39:3–9.

    PubMed  CAS  Google Scholar 

  8. Balazs EA, Gibbs DA. The rheological properties and biological function of hyaluronic acid. In: Balazs EA, ed. Chemistry and Molecular Biology of the Intercellular Matrix. London, UK: Academic Press; 1970:1241–1254.

    Google Scholar 

  9. Balazs EA, Watson D, Duff IF, Roseman S. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum. 1967;10:357–376.

    Article  PubMed  CAS  Google Scholar 

  10. Band PA. Molecular strategies for the therapeutic utilization of hyaluronan. In: Kennedy JF, Phillips GO, Williams PA, Hascall VS, eds. Hyaluronan, Volume 2: Biomedical, Medical and Clinical Aspects. Cambridge, UK: Woodhead Publishing; 2002:427–440.

    Google Scholar 

  11. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2005;2:CD005321.

    PubMed  Google Scholar 

  12. Berriaud N, Milas M, Rinaudo M. Rheological study on mixtures of different molecular weight hyaluronates. Int J Biol Macromol. 1994;16:137–142.

    Article  PubMed  CAS  Google Scholar 

  13. Camenish TD, McDonald JA. Hyaluronan: is bigger better? Am J Resp Cell Mol Biol. 2000;23:431–433.

    Google Scholar 

  14. Dahl LB, Dahl IM, Engström-Laurent A, Granath K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis. 1985;44:817–822.

    Article  PubMed  CAS  Google Scholar 

  15. Dougados M, Nguyen M, Listrat V, Amor B. High molecular weight sodium hyaluronate (hyalectin) in osteoarthritis of the knee: a 1 year placebo-controlled trial. Osteoarthritis Cartilage. 2006;14:814–822.

    Article  Google Scholar 

  16. Felson DT. The epidemiology of knee osteoarthritis: results from the Framingham Osteoarthritis Study. Semin Arthritis Rheum. 1990;20(suppl 1):42–50.

    Article  PubMed  CAS  Google Scholar 

  17. Fergusson J, Boyle JA, McSween NM, Jasani MK. Observations on the flow properties of the synovial fluid from patients with rheumatoid arthritis. Biorheology. 1968;5:119–131.

    Google Scholar 

  18. Fouissac E, Milas M, Rinaudo M. Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronates, a wormlike polyelectrolyte. Macromolecules. 1993;26:6945–6951.

    Article  CAS  Google Scholar 

  19. Fouissac E, Milas M, Rinaudo M, Borsali R. Influence of the ionic strength on the dimensions of sodium hyaluronate. Macromolecules. 1992;25:5613–5617.

    Article  CAS  Google Scholar 

  20. Ghosh P, Guidolin D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent? Semin Arthritis Rheum. 2002;32:10–37.

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis Cartilage. 2005;13:216–224.

    Article  PubMed  CAS  Google Scholar 

  22. Gomez JE, Thurston GB. Comparisons of the oscillatory shear viscoelasticity and composition of pathological synovial fluids. Biorheology. 1993;30:409–427.

    PubMed  CAS  Google Scholar 

  23. Gomis A, Pawlak M, Balazs EA, Schmidt RF, Belmonte C. Effects of different molecular weight elastoviscous hyaluronan solutions on articular nociceptive afferents. Arthritis Rheum. 2004;50:314–326.

    Article  PubMed  CAS  Google Scholar 

  24. Greenberg DD, Stoker A, Kane S, Cockrell M, Cook JL. Biochemical effects of two different hyaluronic acid products in a co-culture model of osteoarthritis. Osteoarthritis Cartilage. 1993;1:97–103.

    Article  Google Scholar 

  25. Jackson DW, Simon TM. Intra-articular distribution and residence time of Hylan A and B: a study in the goat knee. Osteoarthritis Cartilage. 2006;14:1248–1257.

    Article  PubMed  CAS  Google Scholar 

  26. Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis. 1957;16:494–501.

    Article  PubMed  CAS  Google Scholar 

  27. Kirchner M, Marshall D. A double-blind randomized controlled trial comparing alternate forms of the high molecular weight hyaluronan for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage. 2006;14:154–162.

    Article  PubMed  CAS  Google Scholar 

  28. Kogan G, Soltes L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with abroad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17–25.

    Article  PubMed  CAS  Google Scholar 

  29. Kotevoglu N, Lyibozkurt PC, Hiz O, Toktas H, Kuran B. A prospective randomised controlled clinical trial comparing the efficacy of different molecular weight hyaluronan solutions in the treatment of knee osteoarthritis. Rheumatol Int. 2006;26:325–330.

    Article  PubMed  CAS  Google Scholar 

  30. Kraus VB, Stabler TV, Kong SY, Varju G, McDaniel G. Measurement of synovial fluid volume using urea. Osteoarthritis Cartilage. 2007;15:1217–1220.

    Article  PubMed  CAS  Google Scholar 

  31. Lapcik L Jr, Lapcik L, de Smedt S, Demeester J, Chabrecek P. Hyaluronan: preparation, structure, properties and applications. Chem Rev. 1998;98:2663–2684.

    Article  PubMed  CAS  Google Scholar 

  32. Lee HG, Cowman MK. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal Biochem. 1994;219:278–287.

    Article  PubMed  CAS  Google Scholar 

  33. Lee S, Park D, Chmell S. Viscosupplementation with hylan G-F 20 (Synvisc): pain and mobility observations from 74 consecutive patients. J Knee Surg. 2004;17:73–77.

    PubMed  Google Scholar 

  34. Marshall KW. Intra-articular hyaluronan therapy. Curr Opin Rheumatol. 2000;12:468–474.

    Article  PubMed  CAS  Google Scholar 

  35. Milas M, Rinaudo M. Characterization and properties of hyaluronic acid (hyaluronan). In: Dimitriu S, ed. Polysaccharides: Structural Diversity and Functional Versatility. New York, NY: Marcel Dekker; 2002:535–549.

    Google Scholar 

  36. Milas M, Rinaudo M, Roure I, Al-Assaf S, Phillips GO, Williams PA. Comparative rheological behavior of hyaluronan from bacterial and animal sources with cross-linked hyaluronan (hylan) in aqueous solution. Biopolymers. 2001;59:191–204.

    Article  PubMed  CAS  Google Scholar 

  37. Milas M, Rinaudo M, Roure I, Al-Assaf S, Phillips GO, Williams PA. Rheological behaviour of hyaluronan, healon and hylan in aqueous solution. In: Kennedy JF, Phillips GO, Williams PA, Hascall VC, eds. Hyaluronan, Volume 1: Chemical, Biochemical and Biological Aspects. Cambridge, UK: Woodhead Publishing; 2002:181–193.

    Google Scholar 

  38. Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Theor. 2003;5:54–57.

    Article  CAS  Google Scholar 

  39. Nuki G, Ferguson J. Studies on the nature and significance of macromolecular complexes in the rheology of synovial fluid from normal and diseased human joints. Rheol Acta. 1971;10:8–14.

    Article  CAS  Google Scholar 

  40. Praest BM, Greiling H, Kock R. Assay of synovial fluid parameters: hyaluronan concentration as a potential marker for joint diseases. Clin Chim Acta. 1997;266:117–128.

    Article  PubMed  CAS  Google Scholar 

  41. Praest BM, Greiling H, Kock R. Effects of oxygen-derived free radicals on the molecular weight and the polydispersity of hyaluronan solutions. Carbohydr Res. 1997;303:153–157.

    Article  CAS  Google Scholar 

  42. Raynauld JP, Torrance GW, Band PA, Goldsmith CH, Tugwell P, Walker V, Schultz M, Bellamy N. A prospective, randomized, pragmatic, health outcomes trial evaluating the incorporation of hylan G-F 20 into the treatment paradigm for patients with knee osteoarthritis (Part 1 of 2): clinical results. Osteoarthritis Cartilage. 2002;10:506–517.

    Article  PubMed  Google Scholar 

  43. Reichenbach S, Blank S, Rutjes AW, Shang A, King EA, Dieppe PA, Juni P, Trelle S. Hylan versus hyaluronic acid for osteoarthritis of the knee: a systematic review and meta-analysis. Arthritis Rheum. 2007;57:1410–1418.

    Article  PubMed  Google Scholar 

  44. Rinaudo M. Advances in characterisation of polysaccharides in aqueous solution and gel state. In: Dimitriu S, ed. Polysaccharides: Structural Diversity and Functional Versatility. Ed 2. New York, NY: Marcel Dekker; 2004:237–252.

    Google Scholar 

  45. Rinaudo M. Properties and degradation of selected polysaccharides. Corros Eng Sci Technol. 2007;42:324–334.

    Article  CAS  Google Scholar 

  46. Rinaudo M. Rheological investigation on hyaluronan-fibrinogen interaction. Int J Biol Macromol. 2008;43:444–450.

    Article  PubMed  CAS  Google Scholar 

  47. Rinaudo M, Roure I, Milas M. Use of steric exclusion chromatography to characterize hyaluronan, a semi-rigid polysaccharide. Int J Polym Anal Charact. 1999;5:277–287.

    Article  CAS  Google Scholar 

  48. Saari H, Konttinen YT. Determination of synovial fluid hyaluronate concentration and polymerisation by high performance liquid chromatography. Ann Rheum Dis. 1989;48:565–570.

    Article  PubMed  CAS  Google Scholar 

  49. Schiller J, Fuchs B, Arnhold J, Arnold K. Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, diagnosis and potential therapeutic strategies. Curr Med Chem. 2003;10:2123–2145.

    Article  PubMed  CAS  Google Scholar 

  50. Soltes L, Kogan G, Stankovska M, Mendichi R, Rychly J, Schiller J, Gemeiner P. Degradation of high-molar-mass hyaluronan and characterization of fragments. Biomacromolecules. 2007;8:2697–2705.

    Article  PubMed  CAS  Google Scholar 

  51. Soltes L, Stankovska M, Kogan G, Mendichi R, Volpi N, Sasinkova V, Gemeiner P. Degradation of high-molar-mass hyaluronan by an oxidative system comprising ascorbate, Cu(II), and hydrogen peroxide: inhibitory action of antiinflammatory drugs Naproxen and acetylsalicylic acid. J Pharm Biomed Anal. 2007;44:1056–1063.

    Article  PubMed  CAS  Google Scholar 

  52. Tamir E, Robinson D, Koren R, Agar G, Halperin N. Intra-articular hyaluronan injections for the treatment of osteoarthritis of the knee: a randomized, double blind, placebo controlled study. Clin Exp Rheumatol. 2001;19:265–270.

    PubMed  CAS  Google Scholar 

  53. Vendrely C, Valadie H, Bednarova L, Cardin L, Pasdeloup M, Cappadoro J, Bednar J, Rinaudo M, Jamin M. Assembly of the full-length recombinant mouse prion protein I: formation of soluble oligomers. Biochim Biophys Acta. 2005;1724:355–366.

    PubMed  CAS  Google Scholar 

  54. Vitanzo PC, Sennett BJ. Hyaluronans: is clinical effectiveness dependent on molecular weight? Am J Orthop. 2006;35:421-428.

    PubMed  Google Scholar 

  55. Waddell DD, Marino AA. Chronic knee effusions in patients with advanced osteoarthritis: implications for functional outcome of viscosupplementation. J Knee Surg. 2007;20:181–184.

    PubMed  Google Scholar 

  56. Wang CT, Lin YT, Chiang BL, Lin YH, Hou SM. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthritis Cartilage. 2006;14:1237–1247.

    Article  PubMed  Google Scholar 

  57. Weigel PH, Fuller GM, LeBoeuf RD. A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol. 1986;119:219–234.

    Article  PubMed  CAS  Google Scholar 

  58. Weiss C. Why viscoelasticity is important for the medical uses of hyaluronan and Hylans. In: Abatangelao G, Veigel PH, eds. New Frontiers in Medical Sciences: Redefining Hyaluronan. Amsterdam, The Netherlands: Elsevier Science BV; 2000:89–103.

    Google Scholar 

  59. Wobig M, Bach G, Beks P, Dickhut A, Runzheimer J, Schwieger G, Vetter G, Balazs E. The role of elastoviscosity in the efficacy of viscosupplementation for osteoarthritis of the knee: a comparison of hylan G-F 20 and a lower-molecular-weight hyaluronan. Clin Ther. 1999;21:1549–1562.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marguerite Rinaudo PhD.

Additional information

One of the authors (TC) previously received payments from Genzyme Orthopaedics Laboratory, Cambridge, MA, for studies other than the current one and as an occasional consultant.

Each author certifies that his or her institution has approved or waived approval for the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

This work was performed at Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS).

About this article

Cite this article

Mathieu, P., Conrozier, T., Vignon, E. et al. Rheologic Behavior of Osteoarthritic Synovial Fluid after Addition of Hyaluronic Acid: A Pilot Study. Clin Orthop Relat Res 467, 3002–3009 (2009). https://doi.org/10.1007/s11999-009-0867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-0867-x

Keywords

Navigation