Skip to main content
Log in

Computer-assisted versus Manual Alignment in THA: A Probabilistic Approach to Range of Motion

  • Symposium: Papers Presented at the Hip Society Meetings 2008
  • Published:
Clinical Orthopaedics and Related Research

Abstract

Dislocation remains a major complication after THA, and range of motion before impingement is important in joint stability. Variability in implant alignment affects resultant range of motion. We used a probabilistic modeling approach to assess the effects of implant alignment variability based on manual and computer-assisted surgical (CAS) techniques on resultant range of motion after THA. We implemented a contact detection algorithm within a probabilistic analysis framework. The normally distributed alignment variables (mean ± 1 standard deviation) were cup abduction (manual = 45° ± 7.6°, CAS = 45° ± 5.7°), cup anteversion (manual = 20° ± 9.6°, CAS = 20° ± 4.5°), and stem anteversion (manual and CAS = 10° ± 1.5°). The outcomes of the probabilistic analysis were range of motion distributions with 1% and 99% bounds. The upper bounds of motion for manual and CAS alignment were similar because bony impingement was the limiting factor. The lower bounds of range of motion were substantially different depending on the type of surgical alignment; manual alignment produced a smaller range of motion in 3% to 5% of cases. CAS implant alignment produced range of motion values above minimum acceptable levels in all cases simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C

Similar content being viewed by others

References

  1. Bartz RL, Nobel PC, Kadakia NR, Tullos HS. The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am. 2000;82:1300–1307.

    PubMed  CAS  Google Scholar 

  2. Daly PJ, Morrey BF. Operative correction of an unstable total hip arthroplasty. J Bone Joint Surg Am. 1992;74:1334–1343.

    PubMed  CAS  Google Scholar 

  3. D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am. 2000;82:315–321.

    PubMed  CAS  Google Scholar 

  4. Dorr LD, Wan Z. Causes of and treatment protocol for instability of total hip replacement. Clin Orthop Relat Res. 1998;355:144–151.

    Article  PubMed  Google Scholar 

  5. Easley S, Pal S, Tomaszewski P, Petrella A, Rullkoetter P, Laz P. Finite element-based probabilistic analysis tool for orthopaedic applications. Comput Methods Programs Biomed. 2007;85:32–40.

    Article  PubMed  Google Scholar 

  6. Fackler CD, Poss R. Dislocation in total hip arthroplasties. Clin Orthop Relat Res. 1980;151:169–178.

    PubMed  Google Scholar 

  7. Grigoris P, Grecula MJ, Amstutz HC. Tripolar hip replacement for recurrent prosthetic dislocation. Clin Orthop Relat Res. 1994;304:148–155.

    PubMed  Google Scholar 

  8. Haldar A, Mahadevan S. Probability, Reliability and Statistical Methods in Engineering Design. New York, NY: Wiley; 2000.

    Google Scholar 

  9. Harris WH. Advances in surgical technique for total hip replacement. Clin Orthop Relat Res. 1980;146:188–204.

    PubMed  Google Scholar 

  10. Hedlundh U, Ahnfelt L, Hybbinette CH. Dislocations and the femoral head size in primary total hip arthroplasty. Clin Orthop Relat Res. 1996;333:226–233.

    Article  PubMed  Google Scholar 

  11. Jaramaz B, DiGioia III AM, Blackwell M, Nikou C. Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res. 1998;354:70–81.

    Article  PubMed  Google Scholar 

  12. Jaramaz B, Nikou C, Simon D, DiGioia III A. Range of motion after total hip arthroplasty: experimental verification of the analytical simulator. Lect Notes Comput Sci. 1997;1205:573.

    Article  Google Scholar 

  13. Jolles BM, Genoud P, Hoffmeyer P. Accuracy of computer-assisted cup placement in total hip arthroplasty. Int Congr Ser. 2001;1230:314–318.

    Article  Google Scholar 

  14. Jolles BM, Genoud P, Hoffmeyer P. Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement. Clin Orthop Relat Res. 2004;426:174–179.

    Article  PubMed  Google Scholar 

  15. Kalteis T, Handel M, Herold T, Perlick L, Baethis H, Grifka J. Greater accuracy in positioning of the acetabular cup by using an image-free navigation system. Int Orthop. 2005;29:272–276.

    Article  PubMed  CAS  Google Scholar 

  16. Kessler O, Patil S, Stefan W, Mayr E, Colwell CW, D’Lima DD. Bony impingement affects range of motion after total hip arthroplasty: a subject-specific approach. J Orthop Res. 2008;26:443–452.

    Article  PubMed  Google Scholar 

  17. Kluess D, Martin H, Mittelmeier W, Schmitz K-P, Bader R. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Med Eng Phys. 2007;29:465–471.

    Article  PubMed  Google Scholar 

  18. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217–220.

    PubMed  CAS  Google Scholar 

  19. McCollum DE, Gray WJ. Dislocation after total hip arthroplasty. Causes and prevention. Clin Orthop Relat Res. 1990;261:159–170.

    PubMed  Google Scholar 

  20. Minoda Y, Kadowaki T, Kim M. Acetabular component orientation in 834 total hip arthroplasties using a manual technique. Clin Orthop Relat Res. 2006;445:186–191.

    PubMed  Google Scholar 

  21. Morrey BF. Instability after total hip arthroplasty. Orthop Clin North Am. 1992;23:237–248.

    PubMed  CAS  Google Scholar 

  22. Müller ME. Total hip prostheses. Clin Orthop Relat Res. 1970;72:46–68.

    PubMed  Google Scholar 

  23. Nadzadi ME, Pedersen DR, Yack HJ, Callaghan JJ, Brown TD. Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech. 2003;36:577–591.

    Article  PubMed  Google Scholar 

  24. Parratte S, Argenson JA. Validation and usefulness of a computer-assisted cup-positioning system in total hip arthroplasty. A prospective, randomized, controlled study. J Bone Joint Surg Am. 2007;89:494–499.

    Article  PubMed  Google Scholar 

  25. Pierchon F, Pasquier G, Cotten A, Fontaine C, Clarisse J, Duquennoy A. Causes of dislocation of total hip arthroplasty. CT study of component alignment. J Bone Joint Surg Br. 1994;76:45–48.

    PubMed  CAS  Google Scholar 

  26. Seel MJ, Hafez MA, Eckman K, Jaramaz B, Davidson D, DiGioia III AM. Three-dimensional planning and virtual radiographs in revision total hip arthroplasty for instability. Clin Orthop Relat Res. 2006;442:35–38.

    PubMed  Google Scholar 

  27. Turner RS. Postoperative total hip prosthetic femoral head dislocations Incidence, etiologic factors, and management. Clin Orthop Relat Res. 1994;301:196–204.

    PubMed  Google Scholar 

  28. VAKHUM. University of Brussels Web site. Available at: http://www.ulb.ac.be/project/vakhum. Accessed August 13, 2002.

  29. Van Sint Jan S, Salvia P, Hilal I, Sholukha V, Rooze M, Clapworthy G. Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling. J Biomech. 2002;35:1475–1484.

    Article  PubMed  Google Scholar 

  30. White Jr RE, Forness TJ, Allman JK, Junick DW. Effect of posterior capsular repair on early dislocation in primary total hip replacement. Clin Orthop Relat Res. 2001;393:163–167.

    Article  PubMed  Google Scholar 

  31. Widmer KH, Majewski M. The impact of the CCD-angle on range of motion and cup positioning in total hip arthroplasty. Clin Biomech (Bristol Avon). 2005;20:723–728.

    Article  Google Scholar 

  32. Widmer KH, Zurfluh B. Compliant positioning of total hip components for optimal range of motion. J Orthop Res. 2004;22:815–821.

    Article  PubMed  Google Scholar 

  33. Wines AP, McNicol D. Computed tomography measurement of the accuracy of component version in total hip arthroplasty. J Arthroplasty. 2006;21:696–701.

    Article  PubMed  Google Scholar 

  34. Woo RY, Morrey BF. Dislocations after total hip arthroplasty. J Bone Joint Surg Am. 1982;64:1295–1306.

    PubMed  CAS  Google Scholar 

  35. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35:543–548.

    Article  PubMed  Google Scholar 

  36. Wu Y-T, Millwater HR, Cruse TA. Advanced probabilistic structural analysis method for implicit performance functions. J AIAA. 1990;28:1663–1669.

    Article  Google Scholar 

  37. Yoshimine F. The safe-zones for combined cup and neck anteversions that fulfill the essential range of motion and their optimum combination in total hip replacements. J Biomech. 2006;39:1315–1323.

    Article  PubMed  Google Scholar 

  38. Yoshimine F, Ginbayashi K. A mathematical formula to calculate the theoretical range of motion for total hip replacement. J Biomech. 2002;35:989–993.

    Article  PubMed  Google Scholar 

  39. Yuan L, Shih C. Dislocation after total hip arthroplasty. Arch Orthop Trauma Surg. 1999;119:263–266.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Clifford W. Colwell, Jr. MD for his assistance with the surgical technique and Oliver Kessler, MD for providing the CAD models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl D. D’Lima MD, PhD.

Additional information

All authors certify that they have no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

About this article

Cite this article

Petrella, A.J., Stowe, J.Q., D’Lima, D.D. et al. Computer-assisted versus Manual Alignment in THA: A Probabilistic Approach to Range of Motion. Clin Orthop Relat Res 467, 50–55 (2009). https://doi.org/10.1007/s11999-008-0561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0561-4

Keywords

Navigation