Facile synthesis of fluorine-free, hydrophobic, and highly transparent coatings for self-cleaning applications

Abstract

Non-fluorinated coatings have recently emerged as a new approach to avoid contamination on transparent surfaces. This research work concerns the synthesis of highly transparent, hydrophobic, durable, and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed coating is produced by a chemical route (sol–gel method) using two silica-based precursors, hexamethyldisilazane, and tetraethoxysilane (HMDS/TEOS). Then, the prepared Gel HMDS/TEOS was deposited on glass slides by the dip-coating technique. Afterward, the effects of mechanical durability, water-drop testing, thermal cycling testing, and aging times on the hydrophobicity of the gel were analyzed. The properties of the coating were characterized by optical microscopy, scanning electron microscopy, UV–VIS-NIR spectrophotometry, and contact angle measurement. The results show that the organic modification of the gel by trimethylsilyl (–Si–(CH3)3) groups leads to a homogeneous and a hydrophobic surface. Sufficient dilution of this gel with ethanol has been found to provide a highly transparent coating without losing its hydrophobic property. In addition, the robust and durable coating exhibits high self-cleaning performance suitable for various industrial applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Akamatsu, Y, Makita, K, Inaba, H, Minami, T, “Water-repellent coating films on glass prepared from hydrolysis and polycondensation reactions of fluoroalkyltrialkoxylsilane.” Thin Solid Films, 389 (1–2) 138–145 (2001)

    CAS  Article  Google Scholar 

  2. 2.

    Eshaghi, A, Aghaei, AA, “Transparent hydrophobic micro-nano silica-silica nano-composite thin film with environmental durability.” Mater. Chem. Phys., 227 318–323 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    Hammarberg, E, Roos, A, “Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance.” Thin Solid Films, 442 (1–2) 222–226 (2003)

    CAS  Article  Google Scholar 

  4. 4.

    Pisal, AA, Rao, AV, “Development of hydrophobic and optically transparent monolithic silica aerogels for window panel applications.” J. Porous Mater., 24 (3) 685–695 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    Shang, Q, Zhou, Y, “Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging.” Ceram. Int., 42 (7) 8706–8712 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    Bayer, IS, “On the durability and wear resistance of transparent superhydrophobic coatings.” Coatings, 7 (1) 12 (2017)

    Article  CAS  Google Scholar 

  7. 7.

    Al-Qadhi, M, Merah, N, Matin, A, Abu-Dheir, N, Khaled, M, Youcef-Toumi, K, “Preparation of superhydrophobic and self-cleaning polysulfone non-wovens by electrospinning: influence of process parameters on morphology and hydrophobicity.” J. Polym. Res., 22 (11) 207 (2015)

    Article  CAS  Google Scholar 

  8. 8.

    Liu, X, He, J, “One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.” Langmuir, 25 (19) 11822–11826 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    Zhai, L, Cebeci, FC, Cohen, RE, Rubner, MF, “Stable superhydrophobic coatings from polyelectrolyte multilayers.” Nano Lett., 4 (7) 1349–1353 (2004)

    CAS  Article  Google Scholar 

  10. 10.

    Chen, R, Zhang, X, Su, Z, Gong, R, Ge, X, Zhang, H, Wang, C, “Perfectly hydrophobic silicone nanofiber coatings: preparation from methyltrialkoxysilanes and use as water-collecting substrate.” J. Phys. Chem. C, 113 (19) 8350–8356 (2009)

    CAS  Article  Google Scholar 

  11. 11.

    McHale, G, Aqil, S, Shirtcliffe, N, Newton, M, Erbil, HY, “Analysis of droplet evaporation on a superhydrophobic surface.” Langmuir, 21 (24) 11053–11060 (2005)

    CAS  Article  Google Scholar 

  12. 12.

    Daoud, WA, Xin, JH, Tao, X, “Synthesis and characterization of hydrophobic silica nanocomposites.” Appl. Surf. Sci., 252 (15) 5368–5371 (2006)

    CAS  Article  Google Scholar 

  13. 13.

    Milea, C, Bogatu, C, Duta, A, “The influence of parameters in silica sol-gel process.” Bull. Transilvania Univ. Brasov., Eng. Sci. Ser I 4(1), 59 (2011)

    Google Scholar 

  14. 14.

    Liu, Y, Liu, W, Wang, G, Huo, J, Kong, H, Wang, W, Wang, D, Song, Z, “A facile one-step approach to superhydrophilic silica film with hierarchical structure using fluoroalkylsilane.” Colloids Surf., A, 539 109–115 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    Lee, SG, Ham, DS, Lee, DY, Bong, H, Cho, K, “Transparent superhydrophobic/translucent superamphiphobic coatings based on silica–fluoropolymer hybrid nanoparticles.” Langmuir, 29 (48) 15051–15057 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    Schultz, MM, Barofsky, DF, Field, JA, “Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS.” Environ. Sci. Technol., 38 (6) 1828–1835 (2004)

    CAS  Article  Google Scholar 

  17. 17.

    Cai, R, De Smet, D, Vanneste, M, Nysten, B, Glinel, K, Jonas, AM, “One-step aqueous spraying process for the fabrication of omniphobic fabrics free of long perfluoroalkyl chains.” ACS Omega, 4 (15) 16660–16666 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    Hogue, C, “Governments endorse global PFOA ban, with some exemptions.” Chem. Eng. News, 97 (19) 5 (2019)

    Google Scholar 

  19. 19.

    Huang, S-I, Shen, Y-J, Chen, H, “Study on the hydrophobic surfaces prepared by two-step sol–gel process.” Appl. Surf. Sci., 255 (15) 7040–7046 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    Subramanian, BT, Alla, JP, Essomba, JS, Nishter, NF, “Non-fluorinated superhydrophobic spray coatings for oil-water separation applications: An eco-friendly approach.” J. Clean. Product., 256 120693 (2020)

    Article  CAS  Google Scholar 

  21. 21.

    Wang, S-D, Shu, Y-Y, “Superhydrophobic antireflective coating with high transmittance.” J. Coat. Technol. Res., 10 (4) 527–535 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    Li, X, Wang, Y, Wang, R, Wang, S, Zang, D, Geng, X, “A dip-decoating process for producing transparent bi-superhydrophobic and wrinkled water surfaces.” Adv. Mater. Interf., 5 (15) 1800356 (2018)

    Article  CAS  Google Scholar 

  23. 23.

    Wang, X, Zhao, H, Cao, Y, Niu, Y, Shen, J, “Sol–gel preparation of laser damage resistant and moisture-proof antireflective coatings for KDP crystals.” Langmuir, 34 (35) 10262–10269 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    Goswami, D, Medda, SK, De, G, “Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.” ACS Appl. Mater. Interfaces., 3 (9) 3440–3447 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    Wang, S-D, Luo, S-S, “Fabrication of transparent superhydrophobic silica-based film on a glass substrate.” Appl. Surf. Sci., 258 (14) 5443–5450 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    Wright, J, Sommerdijk, N, Sol–gel Materials Chemistry and Applications. 1st edn.” London: CRC Press (2018)

    Google Scholar 

  27. 27.

    Kajihara, K, “Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses.” J. Asian Ceram. Soc., 1 (2) 121–133 (2013)

    Article  Google Scholar 

  28. 28.

    Sarkar, A, Chaudhuri, SR, Wang, S, Kirkbir, F, Murata, H, “Drying of alkoxide gels—Observation of an alternate phenomenology.” J. Sol-Gel. Sci. Technol., 2 (1–3) 865–870 (1994)

    CAS  Article  Google Scholar 

  29. 29.

    Xia, B, Yan, L, Li, Y, Zhang, S, He, M, Li, H, Yan, H, Jiang, B, “Preparation of silica coatings with continuously adjustable refractive indices and wettability properties via sol–gel method.” RSC Advances, 8 (11) 6091–6098 (2018)

    Article  Google Scholar 

  30. 30.

    Burgos, M, Langlet, M, “Condensation and densification mechanism of sol-gel TiO2 layers at low temperature.” J. Sol-Gel. Sci. Technol., 16 (3) 267–276 (1999)

    CAS  Article  Google Scholar 

  31. 31.

    Gallo, SC, Dong, H, “On the fundamental mechanisms of active screen plasma nitriding.” Vacuum, 84 (2) 321–325 (2009)

    Article  CAS  Google Scholar 

  32. 32.

    Rao, AV, Pajonk, G, Bhagat, S, Barboux, P, “Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4−n.” J. Non-Cryst. Solids, 350 216–223 (2004)

    CAS  Article  Google Scholar 

  33. 33.

    Lai, D, Kong, G, Che, C, “Synthesis and corrosion behavior of ZnO/SiO2 nanorod-sub microtube superhydrophobic coating on zinc substrate.” Surf. Coat. Technol., 315 509–518 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    Shewale, PM, Rao, AV, Rao, AP, “Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels.” Appl. Surf. Sci., 254 (21) 6902–6907 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    Bhagat, SD, Kim, Y-H, Yi, G, Ahn, Y-S, Yeo, J-G, Choi, Y-T, “Mesoporous SiO2 powders with high specific surface area by microwave drying of hydrogels: a facile synthesis.” Microporous Mesoporous Mater., 108 (1–3) 333–339 (2008)

    CAS  Article  Google Scholar 

  36. 36.

    Ansari, AA, Singh, S, Singh, N, Malhotra, B, “Synthesis of optically active silica-coated NdF3 core–shell nanoparticles.” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 86 432–436 (2012)

    CAS  Article  Google Scholar 

  37. 37.

    Rao, AV, Latthe, SS, Nadargi, DY, Hirashima, H, Ganesan, V, “Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method.” J. Colloid Interface Sci., 332 (2) 484–490 (2009)

    Article  CAS  Google Scholar 

  38. 38.

    Tao, C, Yan, H, Yuan, X, Yin, Q, Zhu, J, Ni, W, Yan, L, Zhang, L, “Sol-gel based antireflective coatings with superhydrophobicity and exceptionally low refractive indices built from trimethylsilanized hollow silica nanoparticles.” Colloids Surf., A, 509 307–313 (2016)

    CAS  Article  Google Scholar 

  39. 39.

    Hao, S, Lin, T, Ning, S, Qi, Y, Deng, Z, Wang, Y, “Research on cracking of SiO2 nanofilms prepared by the sol-gel method.” Mater. Sci. Semicond. Process., 91 181–187 (2019)

    CAS  Article  Google Scholar 

  40. 40.

    Dou, W, Wang, P, Zhang, D, Yu, J, “An efficient way to prepare hydrophobic antireflective SiO2 film by sol–gel method.” Mater. Lett., 167 69–72 (2016)

    CAS  Article  Google Scholar 

  41. 41.

    Chi, F, Zeng, Y, Liu, C, Liang, D, Li, Y, Xie, R, Pan, N, Ding, C, “Enhancing mechanical stability of sol-gel silica antireflection coatings via ammonia treatment at low temperature.” Result. Phys., 18 103315 (2020)

    Article  Google Scholar 

  42. 42.

    Zhang, Z, Wang, H, Liang, Y, Li, X, Ren, L, Cui, Z, Luo, C, “One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function.” Sci. Rep., 8 (1) 1–12 (2018)

    Article  CAS  Google Scholar 

  43. 43.

    Li, F, Du, M, Zheng, Z, Song, Y, Zheng, Q, “A facile, multifunctional, transparent, and superhydrophobic coating based on a nanoscale porous structure spontaneously assembled from branched silica nanoparticles.” Adv. Mater. Interfaces 2(13) 1500201 (2015)

    Article  Google Scholar 

  44. 44.

    Agustín-Sáenz, C, Machado, M, Zubillaga, O, Tercjak, A, “Hydrophobic and spectrally broadband antireflective methyl-silylated silica coatings with high performance stability for concentrated solar applications.” Sol. Energy Mater. Sol. Cells, 200 109962 (2019)

    Article  CAS  Google Scholar 

  45. 45.

    Kok, M, Young, TM, “Evaluation of insect residue resistant coatings–Correlation of a screening method with a conventional assessment technique.” Prog. Org. Coat., 77 (9) 1382–1390 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Société Nationale des Chemins de Fer Français (SNCF) as a part of SURFNET project, set up by the Institut de Recherche Technologique (IRT) RAILENIUM. We also thank the Laboratoire des Matériaux Céramiques et Procédés Associés (LMCPA) and the Université Polytechnique Hauts-de-France (UPHF) for their collaboration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Hamdi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4249 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamdi, A., Chalon, J., Laurent, P. et al. Facile synthesis of fluorine-free, hydrophobic, and highly transparent coatings for self-cleaning applications. J Coat Technol Res (2021). https://doi.org/10.1007/s11998-020-00444-y

Download citation

Keywords

  • Non-fluorinated coatings
  • Transparent surfaces
  • Hydrophobicity
  • Self-cleaning