Tunable surface chemistry and wettability of octafluorocyclobutane and acrylic acid copolymer combined LDPE substrate by pulsed plasma polymerization


Octafluorocyclobutane and acrylic acid (C4F8-co-AA) are plasma copolymerized onto low-density polyethylene (LDPE) and glass slides under various pulsation periods of radio frequency pulsed plasma. The surface wettability of plasma polymer coating is traditionally considered as a substrate-independent property. The combined effect of ultrathin C4F8-co-AA coatings and LDPE substrate on surface wettability is presented. The high concentration of the carboxylic acid functional groups gives rise to hydrophilicity via lowering duty cycle, and substrate impact gives rise to hydrophobicity for ultrathin coatings. The X-ray photoelectron spectroscopy and coating thickness measurements confirmed that the sudden increase in water contact angle for the lower duty cycle is influenced by the hydrophobic substrate for ultrathin polymer coatings. It is highlighted that the precise control over the surface wettability is attained by tuning the plasma parameters. The substrate-dependent wettability for flat substrate persisted for longer than 8 weeks, which demonstrates wetting stability for ultrathin coatings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.


  1. 1.

    Yao, X, Song, Y, Jiang, L, “Applications of Bio-inspired Special Wettable Surfaces.” Adv. Mater., 23 719–734 (2011). https://doi.org/10.1002/adma.201002689

    CAS  Article  Google Scholar 

  2. 2.

    Muzammil, I, Dinh, DK, Abbas, Q, Imran, M, Sattar, H, Ahmad, AU, “Controlled Surface Wettability by Plasma Polymer Surface Modification.” Surfaces, 2 349–371 (2019). https://doi.org/10.3390/surfaces2020026

    Article  Google Scholar 

  3. 3.

    Falde, EJ, Yohe, ST, Colson, YL, Grinstaff, MW, “Superhydrophobic Materials for Biomedical Applications.” Biomaterials, 104 87–103 (2016). https://doi.org/10.1016/j.biomaterials.2016.06.050

    CAS  Article  Google Scholar 

  4. 4.

    Li, XM, Reinhoudt, D, Crego-Calama, M, “What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces.” Chem. Soc. Rev., 36 1350–1368 (2007). https://doi.org/10.1039/b602486f

    Article  Google Scholar 

  5. 5.

    Liu, K, Yao, X, Jiang, L, “Recent Developments in Bio-inspired Special Wettability.” Chem. Soc. Rev., 39 3240–3255 (2010). https://doi.org/10.1039/b917112f

    CAS  Article  Google Scholar 

  6. 6.

    Lafuma, A, Quere, D, “Superhydrophobic States.” Nat. Mater., 2 457–460 (2003)

    CAS  Article  Google Scholar 

  7. 7.

    Chow, PK, Singh, E, Viana, BC, Gao, J, Luo, J, Li, J, Lin, Z, Elías, AL, Shi, Y, Wang, Z, Terrones, M, Koratkar, N, “Wetting of Mono and Few-Layered WS2 and MoS2 Films Supported on Si/SiO2 Substrates.” ACS Nano, 9 3023–3031 (2015). https://doi.org/10.1021/nn5072073

    CAS  Article  Google Scholar 

  8. 8.

    Choi, BK, Lee, IH, Kim, J, Chang, YJ, “Tunable Wetting Property in Growth Mode-Controlled WS2 Thin Films.” Nanoscale Res. Lett., 12 262 (2017). https://doi.org/10.1186/s11671-017-2030-z

    CAS  Article  Google Scholar 

  9. 9.

    Li, J, Wei, M, Wang, Y, “Substrate Matters: The Influences of Substrate Layers on the Performances of Thin-film Composite Reverse Osmosis Membranes.” Chin. J. Chem. Eng., 25 1676–1684 (2017). https://doi.org/10.1016/j.cjche.2017.05.006

    Article  Google Scholar 

  10. 10.

    Shih, C-J, Strano, MS, Blankschtein, D, “Wetting Translucency of Graphene.” Nat. Mater., 12 866–869 (2013). https://doi.org/10.1038/nmat3760

    CAS  Article  Google Scholar 

  11. 11.

    Muzammil, I, Li, Y, Lei, M, “Tunable Wettability and pH-Responsiveness of Plasma Copolymers of Acrylic Acid and Octafluorocyclobutane.” Plasma Process. Polym., 14 1700053 (2017). https://doi.org/10.1002/ppap.201700053

    CAS  Article  Google Scholar 

  12. 12.

    Kim, MS, Khang, G, Lee, HB, “Gradient Polymer Surfaces for Biomedical Applications.” Prog. Polym. Sci., 33 138–164 (2008). https://doi.org/10.1016/j.progpolymsci.2007.06.001

    CAS  Article  Google Scholar 

  13. 13.

    Chan, CM, Ko, TM, Hiraoka, H, “Polymer Surface Modification by Plasmas and Photons.” Surf. Sci. Rep., 24 3–54 (1996)

    Article  Google Scholar 

  14. 14.

    Muzammil, I, Li, Y, Lei, M, “Cover Picture: Multifunctional Smart Polymer Coatings 10/2017.” Plasma Process. Polym., 14 1770019 (2017). https://doi.org/10.1002/ppap.201770019

    Article  Google Scholar 

  15. 15.

    Siffer, F, Ponche, A, Fioux, P, Schultz, J, Roucoules, V, “A Chemometric Investigation of the Effect of the Process Parameters During Maleic Anhydride Pulsed Plasma Polymerization.” Anal. Chim. Acta, 539 289–299 (2005). https://doi.org/10.1016/j.aca.2005.02.072

    CAS  Article  Google Scholar 

  16. 16.

    Förch, R, Zhang, Z, Knoll, W, “Soft Plasma Treated Surfaces: Tailoring of Structure and Properties for Biomaterial Applications.” Plasma Process. Polym., 2 351–372 (2005). https://doi.org/10.1002/ppap.200400083

    CAS  Article  Google Scholar 

  17. 17.

    Friedrich, J, “Pulsed-Plasma Polymerization.” In: The Plasma Chemistry of Polymer Surfaces, pp. 377–456. Wiley-VCH Verlag GmbH & Co. KGaA, 2012. https://doi.org/10.1002/9783527648009.ch12.

  18. 18.

    Muzammil, I, Li, YP, Li, XY, Lei, MK, “Duty Cycle Dependent Chemical Structure and Wettability of RF Pulsed Plasma Copolymers of Acrylic Acid and Octafluorocyclobutane.” Appl. Surf. Sci., 436 411–418 (2018). https://doi.org/10.1016/j.apsusc.2017.11.261

    CAS  Article  Google Scholar 

  19. 19.

    Daw, R, O’Leary, T, Kelly, J, Short, RD, Cambray-Deakin, M, Devlin, AJ, Brook, IM, Scutt, A, Kothari, S, “Molecular Engineering of Surfaces by Plasma Copolymerization and Enhanced Cell Attachment and Spreading.” Plasmas Polym., 4 113–132 (1999). https://doi.org/10.1023/A:1021844824801

    CAS  Article  Google Scholar 

  20. 20.

    France, RM, Short, RD, Duval, E, Jones, FR, Dawson, RA, MacNeil, S, “Plasma Copolymerization of Allyl Alcohol/1,7-Octadiene: Surface Characterization and Attachment of Human Keratinocytes.” Chem. Mater., 10 1176–1183 (1998). https://doi.org/10.1021/cm970761+

    CAS  Article  Google Scholar 

  21. 21.

    Friedrich, J, Mix, R, Kühn, G, Retzko, I, Schönhals, A, Unger, W, “Plasma-Based Introduction of Monosort Functional Groups of Different Type and Density onto Polymer Surfaces. Part 2: Pulsed Plasma Polymerization.” Compos. Interfaces, 10 173–223 (2003). https://doi.org/10.1163/156855403765826874

    CAS  Article  Google Scholar 

  22. 22.

    Hirotsu, T, Tagaki, C, Partridge, A, “Plasma Copolymerization of Acrylic Acid with Hexamethyldisilazane.” Plasmas Polym., 7 353–366 (2002). https://doi.org/10.1023/A:1021333120098

    CAS  Article  Google Scholar 

  23. 23.

    Bhatt, S, Pulpytel, J, Ceccone, G, Lisboa, P, Rossi, F, Kumar, V, Arefi-Khonsari, F, “Nanostructure Protein Repellant Amphiphilic Copolymer Coatings with Optimized Surface Energy by Inductively Excited Low Pressure Plasma.” Langmuir, 27 14570–14580 (2011). https://doi.org/10.1021/la203256w

    CAS  Article  Google Scholar 

  24. 24.

    Chahine, C, Poncin-Epaillard, F, Debarnot, D, “Plasma Copolymerization of Fluorinated and Acrylate Monomers: Kinetics and Chemical Structure Study.” Plasma Process. Polym., 12 493–501 (2015). https://doi.org/10.1002/ppap.201400128

    CAS  Article  Google Scholar 

  25. 25.

    Rodriguez-Emmenegger, C, Kylián, O, Houska, M, Brynda, E, Artemenko, A, Kousal, J, Alles, AB, Biederman, H, “Substrate-Independent Approach for the Generation of Functional Protein Resistant Surfaces.” Biomacromolecules, 12 1058–1066 (2011). https://doi.org/10.1021/bm101406m

    CAS  Article  Google Scholar 

  26. 26.

    Teare, DOH, Schofield, WCE, Roucoules, V, Badyal, JPS, “Substrate-Independent Growth of Micropatterned Polymer Brushes.” Langmuir, 19 2398–2403 (2003). https://doi.org/10.1021/la020279s

    CAS  Article  Google Scholar 

  27. 27.

    Voronin, SA, Zelzer, M, Fotea, C, Alexander, MR, Bradley, JW, “Pulsed and Continuous Wave Acrylic Acid Radio Frequency Plasma Deposits: Plasma and Surface Chemistry.” J. Phys. Chem. B, 111 3419–3429 (2007). https://doi.org/10.1021/jp068488z

    CAS  Article  Google Scholar 

  28. 28.

    Vasilev, K, Michelmore, A, Griesser, HJ, Short, RD, “Substrate Influence on the Initial Growth Phase of Plasma-Deposited Polymer Films.” Chem. Commun., (2009). https://doi.org/10.1039/B904367E

    Article  Google Scholar 

  29. 29.

    Chen, RT, Muir, BW, Thomsen, L, Tadich, A, Cowie, BCC, Such, GK, Postma, A, McLean, KM, Caruso, F, “New Insights into the Substrate-Plasma Polymer Interface.” J. Phys. Chem. B, 115 6495–6502 (2011). https://doi.org/10.1021/jp200864k

    CAS  Article  Google Scholar 

  30. 30.

    Vasilev, K, Michelmore, A, Martinek, P, Chan, J, Sah, V, Griesser, HJ, Short, RD, “Early Stages of Growth of Plasma Polymer Coatings Deposited from Nitrogen- and Oxygen-Containing Monomers.” Plasma Process. Polym., 7 824–835 (2010). https://doi.org/10.1002/ppap.201000030

    CAS  Article  Google Scholar 

  31. 31.

    Li, Y, Muir, BW, Easton, CD, Thomsen, L, Nisbet, DR, Forsythe, JS, “A Study of the Initial Film Growth of PEG-Like Plasma Polymer Films via XPS and NEXAFS.” Appl. Surf. Sci., 288 288–294 (2014). https://doi.org/10.1016/j.apsusc.2013.10.022

    CAS  Article  Google Scholar 

  32. 32.

    Akhavan, B, Menges, B, Forch, R, “Inhomogeneous Growth of Micrometer Thick Plasma Polymerized Films.” Langmuir, 32 4792–4799 (2016). https://doi.org/10.1021/acs.langmuir.6b01050

    CAS  Article  Google Scholar 

  33. 33.

    Akhavan, B, Wise, SG, Bilek, MMM, “Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals.” Langmuir, 32 10835–10843 (2016). https://doi.org/10.1021/acs.langmuir.6b02901

    CAS  Article  Google Scholar 

  34. 34.

    Akhavan, B, Jarvis, K, Majewski, P, “Evolution of Hydrophobicity in Plasma Polymerised 1,7-Octadiene Films.” Plasma Process. Polym., 10 1018–1029 (2013). https://doi.org/10.1002/ppap.201300055

    CAS  Article  Google Scholar 

  35. 35.

    Lei, MK, Zhu, XM, “Role of Nitrogen in Pitting Corrosion Resistance of a High-Nitrogen Face-Centered-Cubic Phase Formed on Austenitic Stainless Steel.” J. Electrochem. Soc., 152 B291–B295 (2005). https://doi.org/10.1149/1.1939245

    CAS  Article  Google Scholar 

  36. 36.

    Gray, BF, Pritchard, HO, “208. The Thermal Decomposition of Octadeuterocyclobutane and Octafluorocyclobutane.” J. Chem. Soc., (1956). https://doi.org/10.1039/jr9560001002

    Article  Google Scholar 

  37. 37.

    Labelle, CB, Opila, R, Kornblit, A, “Plasma Deposition of Fluorocarbon Thin Films from c-C4F8 Using Pulsed and Continuous rf Excitation.” J Vac Sci Technol A, 23 190 (2005). https://doi.org/10.1116/1.1830496

    CAS  Article  Google Scholar 

  38. 38.

    Voronin, SA, Bradley, JW, Fotea, C, Zelzer, M, Alexander, MR, “Characterization of Thin-Film Deposition in a Pulsed Acrylic Acid Polymerizing Discharge.” J Vac Sci Technol A, 25 1093 (2007). https://doi.org/10.1116/1.2712186

    CAS  Article  Google Scholar 

  39. 39.

    Tolstoy, VP, Chernyshova, IV, Skryshevsky, VA, “Interpretation of IR Spectra of Ultrathin Films.” In: Handbook of Infrared Spectroscopy of Ultrathin Films, pp. 140–306. Wiley, Hoboken, 2003. https://doi.org/10.1002/047123432x.ch3

  40. 40.

    Schmidt, DL, Brady, RF, Lam, K, Schmidt, DC, Chaudhury, MK, “Contact Angle Hysteresis, Adhesion, and Marine Biofouling.” Langmuir, 20 2830–2836 (2004). https://doi.org/10.1021/la035385o

    CAS  Article  Google Scholar 

  41. 41.

    Quéré, D, “Wetting and Roughness.” Annu. Rev. Mater. Res., 38 71–99 (2008). https://doi.org/10.1146/annurev.matsci.38.060407.132434

    CAS  Article  Google Scholar 

  42. 42.

    Li, YP, Li, SY, Shi, W, Lei, MK, “Hydrophobic Over-Recovery During Aging of Polyethylene Modified by Oxygen Capacitively Coupled Radio Frequency Plasma: A New Approach for Stable Superhydrophobic Surface with High Water Adhesion.” Surf. Coat. Technol., 206 4952–4958 (2012). https://doi.org/10.1016/j.surfcoat.2012.05.120

    CAS  Article  Google Scholar 

  43. 43.

    Rich, SA, Dufour, T, Leroy, P, Nittler, L, Pireaux, JJ, Reniers, F, “Low-Density Polyethylene Films Treated by an Atmospheric Ar–O2 Post-discharge: Functionalization, Etching, Degradation and Partial Recovery of the Native Wettability State.” J. Phys. D Appl. Phys., 47 065203 (2014)

    Article  Google Scholar 

Download references


This work is supported by the projects supported by the National Natural Science Foundation of China under Grant Nos. 51611530706 and 51621064, the National Basic Research Program of China (973 Program) under Grant No. 2015CB057306, the Fundamental Research Funds for the Central Universities under Grant No. DUT16QY17, and the Chinese Government Scholarship under Grant No. 2013GXZE57.

Author information



Corresponding author

Correspondence to I. Muzammil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1961 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muzammil, I., Li, Y.P., Li, X.Y. et al. Tunable surface chemistry and wettability of octafluorocyclobutane and acrylic acid copolymer combined LDPE substrate by pulsed plasma polymerization. J Coat Technol Res 17, 621–632 (2020). https://doi.org/10.1007/s11998-019-00244-z

Download citation


  • Pulsed plasma polymerization
  • Superhydrophobicity
  • Superhydrophilicity
  • Controllable Wettability
  • Wetting hysteresis