Advertisement

Development of direct contact-killing non-leaching antimicrobial polyurethanes through click chemistry

  • Kaimei Peng
  • Xuexin Dai
  • Haili Mao
  • Hongtao Zou
  • Zaibo Yang
  • Weiping Tu
  • Jianqing Hu
Article
  • 60 Downloads

Abstract

A robust, efficient, and orthogonal click chemistry (copper (I)-catalyzed alkyne-azide cycloaddition) was used to prepare an antimicrobial polymer and precisely control the conjugation ratio of antibiotic molecules to polymer. Antimicrobial polyurethanes with pendant benzisothiazolinone (PU-BIT) were synthesized using click chemistry to connect azide functional polyurethane (PU-N3) and alkyne functional benzisothiazolinone (BIT-Al). The direct contact-killing and non-leaching antimicrobial properties of PU-BIT were verified by both antimicrobial drop and disk diffusion. This approach provides a new methodology and platform for the development of contact-killing and non-leaching antimicrobial materials for a variety of practical applications. This research is the first to demonstrate that the broad-spectrum BIT antibiotic is a selective antibiotic for Gram-positive bacteria when covalently linked to a polymer. PU-BIT film containing 0.8 wt% BIT exhibited a selective antimicrobial performance with bactericidal efficacy of 91.6% and 30% against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The mechanism of the selective antimicrobial activity of PU-BIT is also discussed.

Keywords

Selective antimicrobial polymer Click chemistry Contact-killing Non-leaching antibiotic Polyurethane 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21762036) and Foundation for High-level Talents in Qiannan Normal University for Nationalities and Qiankehe LH [2015]7706.

References

  1. 1.
    Richards, MJ, Edwards, JR, Culver, DH, Gaynes, RP, “Nosocomial Infections in Medical Intensive Care Units in the United States.” Crit. Care Med., 27 (5) 887–892 (1999)CrossRefGoogle Scholar
  2. 2.
    Kenawy, E-R, Worley, SD, Broughton, R, “The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review.” Biomacromolecules, 8 (5) 1359–1384 (2007)CrossRefGoogle Scholar
  3. 3.
    Jain, A, Duvvuri, LS, Farah, S, Beyth, N, Domb, AJ, Khan, W, “Antimicrobial Polymers.” Adv. Healthc. Mater., 3 (12) 1969–1985 (2014)CrossRefGoogle Scholar
  4. 4.
    Siedenbiedel, F, Tiller, JC, “Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles.” Polymers, 4 (4) 46–71 (2012)CrossRefGoogle Scholar
  5. 5.
    Dizman, B, Elasri, MO, Mathias, LJ, “Synthesis, Characterization, and Antibacterial Activities of Novel Methacrylate Polymers Containing Norfloxacin.” Biomacromolecules, 6 514–520 (2005)CrossRefGoogle Scholar
  6. 6.
    Turos, E, Shim, JY, Wang, Y, Greenhalgh, K, Reddy, GS, Dickey, S, Lim, DV, “Antibiotic-Conjugated Polyacrylate Nanoparticles: New Opportunities for Development of Anti-MRSA Agents.” Bioorg. Med. Chem. Lett., 17 (1) 53–56 (2007)CrossRefGoogle Scholar
  7. 7.
    Schmidt, M, Bast, LK, Lanfer, F, Richter, L, Hennes, E, Seymen, R, Krumm, C, Tiller, JC, “Poly(2-oxazoline)–Antibiotic Conjugates with Penicillins.” Bioconjugate Chem., 28 (9) 2440–2451 (2017)CrossRefGoogle Scholar
  8. 8.
    Pichavant, L, Carrie, H, Nguyen, MN, Plawinski, L, Durrieu, MC, Heroguez, V, “Vancomycin Functionalized Nanoparticles for Bactericidal Biomaterial Surfaces.” Biomacromolecules, 17 (4) 1339–1346 (2016)CrossRefGoogle Scholar
  9. 9.
    Schmidt, M, Harmuth, S, Barth, ER, Wurm, E, Fobbe, R, Sickmann, A, Krumm, C, Tiller, JC, “Conjugation of Ciprofloxacin with Poly(2-oxazoline)s and Polyethylene Glycol via End Groups.” Bioconjug. Chem., 26 (9) 1950–1962 (2015)CrossRefGoogle Scholar
  10. 10.
    Kawabata, N, “Capture of Micro-Organisms and Viruses by Pyridinium-Type Polymers and Application to Biotechnology and Water Purification.” Prog. Polym. Sci., 17 (1) 1–34 (1992)CrossRefGoogle Scholar
  11. 11.
    Katz, L, Schroeder, W, “Process for the Production of N-benzylidene and N-quinolylmethylene-substituted 2-Aminobenz-isothiazolones.” US 2767172, (1956)Google Scholar
  12. 12.
    Goerdeler, J, Mittler, W, “Über Isothiazole, III. Synthese von 3-Hydroxy-, 3-Alkoxy- und 3-Amino-isothiazolen.” Chem. Ber., 96 944–954 (1963)CrossRefGoogle Scholar
  13. 13.
    Crow, WD, Leonard, NJ, “3-Isothiazolone-cis-3-Thiocyanoacrylamide Equilibria.” J. Org. Chem., 30 (8) 2660–2665 (1965)CrossRefGoogle Scholar
  14. 14.
    Lewis, SN, Grove, W, Miller, GA and Law, AB, “Certain 2-carbamoyl-3-isothiazolenes.” US 3523121, (1970)Google Scholar
  15. 15.
    Lewis, SN, Miller, GA, Hausman, M, Szamborski, EC, “Isothiazoles I: 4-Isothiazolin-3-Ones. A General Synthesis from 3,3′-Dithiodipropionamides.” J. Heterocycl. Chem., 8 571–580 (1971)CrossRefGoogle Scholar
  16. 16.
    Williams, TM, “The Mechanism of Action of Isothiazolone Biocides.” Powerpl. Chem., 9, 14–22 (2007)Google Scholar
  17. 17.
    Morley, JO, Oliver, AJ, Charlton, MH, “Theoretical Studies on the Biocidal Activity of 5-Chloro-3-Isothiazolone.” J. Mol. Struct. Theochem, 429 103–110 (1998)CrossRefGoogle Scholar
  18. 18.
    Khalaj, A, Adibpour, N, Shahverdi, AR, Daneshtalab, M, “Synthesis and Antibacterial Activity of 2-(4-Substituted Phenyl)-3(2H)-Isothiazolones.” Eur. J. Med. Chem., 39 (8) 699–705 (2004)CrossRefGoogle Scholar
  19. 19.
    Huang, C-Y, Hsieh, S-P, Kuo, P-A, Jane, W-N, Tu, J, Wang, Y-N, Ko, C-H, “Impact of Disinfectant and Nutrient Concentration on Growth and Biofilm Formation for a Pseudomonas Strain and the Mixed Cultures from a Fine Papermachine System.” Int. Biodeterior. Biodegrad., 63 (8) 998–1007 (2009)CrossRefGoogle Scholar
  20. 20.
    Lin, QB, Wang, TJ, Song, H, Li, B, “Analysis of Isothiazolinone Biocides in Paper for Food Packaging by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry.” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess, 27 (12) 1775–1781 (2010)CrossRefGoogle Scholar
  21. 21.
    Lin, QB, Wang, TJ, Song, H, Wang, RZ, “Kinetic Migration of Isothiazolinone Biocides from Paper Packaging to Tenax and Porapak.” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess, 28 (9) 1294–1301 (2011)CrossRefGoogle Scholar
  22. 22.
    Thomas, KV, Brooks, S, “The Environmental Fate and Effects of Antifouling Paint Biocides.” Biofouling, 26 (1) 73–88 (2010)CrossRefGoogle Scholar
  23. 23.
    Yang, JX, You, CH, Wang, XH, Lin, Q, “The Synthesis and Bioactivities of 2-Hydroxyethyl Benzo[d] Isothiazole-3(2H)-One Marine Antifouling Paints.” Advanced Materials Research, 646 24–29 (2013)CrossRefGoogle Scholar
  24. 24.
    Schoknecht, U, Wegner, R, Horn, W, Jann, O, “Emission of Biocides from Treated Materials Test Procedures for Water and Air.” Environ. Sci. Pollut., 10 154–161 (2003)CrossRefGoogle Scholar
  25. 25.
    Bordi, F, Mor, M, Plazzi, PV, Silva, C, Morini, G, Impicciatore, M, Barocelli, E, Chiavarini, M, “4-(1,2-Benzisothiazol-3-yl)alkanoic and Phenylalkanoic Acids: Synthesis and Anti-inflammatory, Analgesic and Antipyretic Activities.” Farmaco, 47 551–565 (1992)Google Scholar
  26. 26.
    Vicinia, P, Amorettia, L, Ballabenib, V, Tognolinib, M, Barocelli, E, “2-Amino-Benzo[d]Isothiazol-3-One Derivatives_ Synthesis and Assessment of Their Antiplatelet_Spasmolytic Effects.” Bioorganic Med. Chem., 8 2355–2358 (2000)CrossRefGoogle Scholar
  27. 27.
    Ballabeni, V, Tognolini, M, Calcina, F, Impicciatore, M, Vicini, P, Barocelli, E, “New Insights into the Pharmacological Properties of Potent Antiplatelet 2-Amino-Benzo [d] Isothiazol-3-One Derivatives.” Pharmacol. Res., 46 389–393 (2002)CrossRefGoogle Scholar
  28. 28.
    Moradi, M, Duan, J, Du, X, “Investigation of the Effect of 4,5-Dichloro-2-n-Octyl-4-Isothiazolin-3-One Inhibition on the Corrosion of Carbon Steel in Bacillus sp. Inoculated Artificial Seawater.” Corros. Sci., 69 338–345 (2013)CrossRefGoogle Scholar
  29. 29.
    Collier, PJ, Ramsey, AJ, Austin, P, Gilbert, P, “Growth Inhibitory and Biocidal Activity of Some Isothiazolone Biocides.” J. Appl. Bacteriol., 69 569–577 (1990)CrossRefGoogle Scholar
  30. 30.
    Chapman, JS, “Biocide Resistance Mechanisms.” Int. Biodeterior. Biodegrad., 51 (2) 133–138 (2003)CrossRefGoogle Scholar
  31. 31.
    Freeman, S, “Allergic Contact Dermatitis Due to 1,2-Benzisothiazolin-3-One in Gum Arabic.” Contact Dermat., 11 (3) 146–149 (1984)CrossRefGoogle Scholar
  32. 32.
    Kagano, H, Goda, H and Sakaue, S, Method for producing alkylsulfinylbenamides and 1-2 benzisothiazol-3-ones. US 5744609, (1998)Google Scholar
  33. 33.
    Shimizu, M, Takagi, T, Shibakami, M, “Sythesis of 2-(2-Alkoxycarbonyl-phenylthio)-1,2-Benzisothiazolin-3-Ones from 2-Sulfenamoylbenzoates.” Heterocycles, 53 (12) 2803–2808 (2000)CrossRefGoogle Scholar
  34. 34.
    Fuller, SJ, Denyer, SP, Hugo, WB, Pemberton, D, Woodcock, PM, Buckley, AJ, “The Mode of Action of l,2-Benzisothiazolin-3-One On Staphylococcus Aureus.” Lett. Appl. Microbiol., 1 (1) 13–15 (1985)CrossRefGoogle Scholar
  35. 35.
    Collier, PJ, Austin, P, Gilbert, P, “Association and Distribution of Some Isothiazolone Biocides into E. coli ATCC 8739 and S. pombe.” Int. J. Pharm., 66 201–206 (1990)CrossRefGoogle Scholar
  36. 36.
    Diehl, MA, Chapman, JS, “Association of the Biocide 5-Chloro-2-Methyl-Isothiazol-3-One with Pseudomonas aeruginosa and Pseudomonas fluorescens.” Int. Biodeterior. Biodegrad., 44 191–199 (1999)CrossRefGoogle Scholar
  37. 37.
    Zhulenkovs, D, Rudevica, Z, Jaudzems, K, Turks, M, Leonchiks, A, “Discovery and Structure-Activity Relationship Studies of Irreversible Benzisothiazolinone-Based Inhibitors Against Staphylococcus aureus Sortase A Transpeptidase.” Bioorg. Med. Chem., 22 (21) 5988–6003 (2014)CrossRefGoogle Scholar
  38. 38.
    Chung, Y-C, Kim, HY, Choi, JW and Chun, BC, “Preparation of Water-Compatible Antifungal Polyurethane with Grafted Benzimidazole as the Antifungal Agent.” J. Appl. Polym. Sci., 132 (14) 41676–41684 (2015)CrossRefGoogle Scholar
  39. 39.
    Włodarczyk, D, Urban, M, Strankowski, M, “Chemical Modifications of Graphene and Their Influence on Properties Of Polyurethane Composites: A Review.” Phys. Scr., 91 (10) 104003 (2016)CrossRefGoogle Scholar
  40. 40.
    Chung, Y-C, Jo, SH, Kim, HY, Chun, BC, “Characterization and Effect of Covalently Grafted Benzoic Acid on the Low Temperature Flexibility and Water Vapor Permeability of a Polyurethane Copolymer.” Polym. Plast. Technol. Eng., 55 (4) 356–367 (2015)CrossRefGoogle Scholar
  41. 41.
    Fik, CP, Konieczny, S, Pashley, DH, Waschinski, CJ, Ladisch, RS, Salz, U, Bock, T, Tiller, JC, “Telechelic Poly(2-oxazoline)s with a Biocidal and a Polymerizable Terminal as Collagenase Inhibiting Additive for Long-Term Active Antimicrobial.” Dental Materials, 14 (11) 1569–1579 (2014)Google Scholar
  42. 42.
    Siedenbiedel, F, Fuchs, A, Moll, T, Weide, M, Breves, R, Tiller, JC, “Star-Shaped Poly(styrene)-block-Poly(4-vinyl-N-methylpyridiniumiodide) for Semipermanent Antimicrobial Coatings.” Macromol. Biosci., 13 (10) 1447–1455 (2013)CrossRefGoogle Scholar
  43. 43.
    Vitali, T, Amoretti, L, Mossini, F, “Preparation and Antifungal Effect of Bis-(2-Carboxyamidophenyl) Disulphides and of 1, 2-Benzoisothiazoline-3-One Methoxy Substitutes.” Farmaco, Edizione scientifica, 23 (5) 466–476 (1968)Google Scholar
  44. 44.
    Ponci, R, Glaldif, F, Baruffini, A, “2,2-Dicarbamido-5,5-Dinitrodiphenyldisulfides and 6-Nitro-1,2-Benzoisothiazolones.” Farmaco Edizione Scientifica, 19 254–268 (1964)Google Scholar
  45. 45.
    Ponci, R, Vitali, T, Mossini, F, “Bis-(2-Carboxyphenyl) Disulphidediamides and Benzoisothiazolinonic Compounds. Influence of Butylic Residues in the Molecule on the Antifungal Acitivity.” Il Farmaco, Edizione Scientifica, 22 (12) 999–1010 (1967)Google Scholar
  46. 46.
    Carmellino, ML, Pagani, G, Pregnolato, M, Terreni, M, Pastoni, F, “Antimicrobial Activity of Fluorinated 1,2-Benzisothiazol-3(2H)-Ones and 2,2′-Dithiobis(Benzamides).” Eur. J. Med. Chem., 29 (10) 743–751 (1994)CrossRefGoogle Scholar
  47. 47.
    Hu, J, Peng, K, Guo, J, Shan, D, Kim, GB, Li, Q, Gerhard, E, Zhu, L, Tu, W, Lv, W, Hickner, MA, Yang, J, “Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.” ACS Appl. Mater. Interfaces, 8 (27) 17499–17510 (2016)CrossRefGoogle Scholar
  48. 48.
    Guo, J, Xie, Z, Tran, RT, Xie, D, Jin, D, Bai, X, Yang, J, “Click Chemistry Plays a Dual Role in Biodegradable Polymer Design.” Adv. Mater., 26 (12) 1906–1911 (2014)CrossRefGoogle Scholar
  49. 49.
    Karamdoust, S, Yu, B, Bonduelle, CV, Liu, Y, Davidson, G, Stojcevic, G, Yang, J, Lau, WM, Gillies, ER, “Preparation of Antibacterial Surfaces by Hyperthermal Hydrogen Induced Cross-Linking of Polymer Thin Films.” J. Mater. Chem., 22 (11) 4881 (2012)CrossRefGoogle Scholar
  50. 50.
    Lin, JJ, Lin, WC, Li, SD, Lin, CY, Hsu, SH, “Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets.” ACS Appl. Mater. Interfaces, 5 (2) 433–443 (2013)CrossRefGoogle Scholar
  51. 51.
    Pielichowska, K, Bieda, J, Szatkowski, P, “Polyurethane/Graphite Nano-Platelet Composites for Thermal Energy Storage.” Renew. Energy, 91 456–465 (2016)CrossRefGoogle Scholar
  52. 52.
    Kutty, SKN, Chaki, TK, Nando, GB, “Thermal Degradation of Short Kevlar Fibrethermoplastic Polyurethane Composite.” Polym. Degrad. Stab., 38 (3) 187–192 (1992)CrossRefGoogle Scholar
  53. 53.
    Petrovic, ZS, Zavargo, Z, Flynn, JH, Macknight, WJ, “Thermal Degradation of Segmented Polyurethanes.” J. Appl. Polym. Sci., 51 (6) 1087–1095 (1994)CrossRefGoogle Scholar
  54. 54.
    Gradwell, MHS, Hourston, DJ, Pabunruang, T, Schafer, F-U, Reading, M, “High-Resolution Thermogravimetric Analysis of Polyurethane/Poly(Ethyl Methacrylate) Interpenetrating Polymer Networks.” J. Appl. Polym. Sci., 70 (2) 287–295 (1998)CrossRefGoogle Scholar
  55. 55.
    Guohua, Z, Ya, L, Cuilan, F, Min, Z, Caiqiong, Z, Zongdao, C, “Water Resistance, Mechanical Properties and Biodegradability of Methylated-Cornstarch/Poly(Vinyl Alcohol) Blend Film.” Polym. Degrad. Stab., 91 (4) 703–711 (2006)CrossRefGoogle Scholar
  56. 56.
    Zharov, VP, Mercer, KE, Galitovskaya, EN, Smeltzer, MS, “Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles.” Biophys. J., 90 (2) 619–627 (2006)CrossRefGoogle Scholar
  57. 57.
    Borgna, P, Carmellino, ML, Natangelo, M, Pagani, G, Pastoni, F, Pregnolato, M, Terreni, M, “Antimicrobial Activity of N-Hydroxyalkyl 1,2-Benzisothiazol-3(2H)-Ones and Their Thiono Analogues.” Eur. J. Med. Chem., 31 919–925 (1996)CrossRefGoogle Scholar
  58. 58.
    Schneewind, O, Mazmanian, SK, Ton-that, H, “Sortase-Catalysed Anchoring of Surface Proteins to the Cell Wall of Staphylococcus Aureus.” Mol. Microbiol., 40 (5) 1049–1057 (2001)CrossRefGoogle Scholar
  59. 59.
    Pallen, MJ, Chaudhuri, RR, Henderson, IR, “Genomic Analysis of Secretion Systems.” Curr. Opin. Microbiol., 6 (5) 519–527 (2003)CrossRefGoogle Scholar
  60. 60.
    Cozzi, R, Malito, E, Nuccitelli, A, D’Onofrio, M, Martinelli, M, Ferlenghi, I, Grandi, G, Telford, JL, Maione, D, Rinaudo, CD, “Structure Analysis and Site-Directed Mutagenesis of Defined Key Residues and Motives for Pilus-Related Sortase C1 in Group B Streptococcus.” FASEB J., 25 1874–1886 (2011)CrossRefGoogle Scholar
  61. 61.
    Sun, X, Zhang, L, Cao, Z, Deng, Y, Liu, L, Fong, H, Sun, Y, “Electrospun Composite Nanofiber Fabrics Containing Uniformly Dispersed Antimicrobial Agents as an Innovative Type of Polymeric Materials with Superior Antimicrobial Efficacy.” ACS Appl. Mater. Interfaces, 2 (4) 952–956 (2010)CrossRefGoogle Scholar
  62. 62.
    Strassburg, A, Petranowitsch, J, Paetzold, F, Krumm, C, Peter, E, Meuris, M, Köller, M, Tiller, JC, “Cross-Linking of a Hydrophilic, Antimicrobial Polycation Toward a Fast-Swelling, Antimicrobial Superabsorber and Interpenetrating Hydrogel Networks with Long Lasting Antimicrobial Properties.” ACS Appl. Mater. Interfaces, 9 (42) 36573–36582 (2017)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2018

Authors and Affiliations

  • Kaimei Peng
    • 1
    • 2
  • Xuexin Dai
    • 1
  • Haili Mao
    • 1
  • Hongtao Zou
    • 1
  • Zaibo Yang
    • 1
  • Weiping Tu
    • 2
  • Jianqing Hu
    • 2
  1. 1.School of Chemistry and Chemical EngineeringQiannan Normal University for NationalitiesDuyunChina
  2. 2.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations