Skip to main content
Log in

Color prediction of metallic coatings from measurements at common geometries in portable multiangle spectrophotometers

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Illuminating and viewing geometries may strongly affect the color appearance of metallic coatings, which can be characterized accurately by bidirectional reflectance distribution function (BRDF) measurement devices. However, such devices with hundreds or even thousands of different geometries are usually expensive and complex. Accordingly, two modified models were developed in this study, based on the distribution of aluminum-flake pigments in the coatings, to, respectively, estimate the spectral radiance factors and the CIE tristimulus values of metallic coatings utilizing the measurements at 6 common geometries of portable multiangle spectrophotometers. Their performance was examined with 65 achromatic and 20 chromatic metallic coating samples under D65, A, and F11 illuminants. The average CIEDE2000 color differences over all 19 geometries were found to be less than 1.8 for both models, while the average CAM02-SCD and CIELAB color differences can, respectively, reach 1.7 and 2.0, indicating the effectiveness of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferrero, A, Campos, J, Rabal, AM, Pons, A, “A Single Analytical Model for Sparkle and Graininess Patterns in Texture of Effect Coatings.” Opt. Expr., 21 (22) 26812–26819 (2013)

    Article  Google Scholar 

  2. Klein, GA, Todd, M, Industrial Color Physics. Springer, New York (2010)

    Book  Google Scholar 

  3. Maile, FJ, Pfaff, G, Reynders, P, “Effect Pigments—Past, Present and Future.” Prog. Org. Coat., 54 (3) 150–163 (2005)

    Article  Google Scholar 

  4. Kirchner, E, van den Kieboom, GJ, Njo, L, Supèr, R, Gottenbos, R, “Observation of Visual Texture of Metallic and Pearlescent Materials.” Color Res. Appl., 32 (4) 256–266 (2007)

    Article  Google Scholar 

  5. Gómez, O, Perales, E, Chorro, E, Burgos, FJ, Viqueira, V, Vilaseca, M, Martínez-Verdú, FM, Pujol, J, “Visual and Instrumental Assessments of Color Differences in Automotive Coatings.” Color Res. Appl., 41 (4) 384–391 (2016)

    Article  Google Scholar 

  6. Pointer, M, A Framework for the Measurement of Visual Appearance, pp. 175–2006. CIE Publication, Paris (2006)

    Google Scholar 

  7. Nadal, ME, Early, EA, “Color Measurements for Pearlescent Coatings.” Color Res. Appl., 29 (1) 38–42 (2004)

    Article  Google Scholar 

  8. Medina, JM, Diaz, JA, “Classification of Batch Processes in Automotive Metallic Coatings Using Principal Component Analysis Similarity Factors from Reflectance Spectra.” Prog. Org. Coat., 88 75–83 (2015)

    Article  Google Scholar 

  9. Ferrero, A, Rabal, AM, Campos, J, Pons, A, Hernanz, ML, “Variables Separation of the Spectral BRDF for Better Understanding Color Variation in Special Effect Pigment Coatings.” J. Opt. Soc. Am. A, 29 (6) 842–847 (2012)

    Article  Google Scholar 

  10. Ferrero, A, Campos, J, “Challenges in Appearance Characterization of Coatings with Effect Pigments.” In: Laser Science, pp. JTh2A-184. Optical Society of America (2016). https://doi.org/10.1364/FIO.2016.JTh2A.184

  11. Kirchner, E, Ravi, J, “Setting Tolerances on Color and Texture for Automotive Coatings.” Color Res. Appl., 39 (1) 88–98 (2014)

    Article  Google Scholar 

  12. Streitberger, HJ, Dossel, KF, Automotive Paints and Coatings. Wiley, Hoboken (2008)

    Book  Google Scholar 

  13. Rabal, AM, Ferrero, A, Campos, J, Fontecha, JL, Pons, A, Rubiño, AM, Corróns, A, “Automatic Gonio-spectrophotometer for the Absolute Measurement of the Spectral BRDF at In- and Out-of-plane and Retroreflection Geometries.” Metrologia, 49 (3) 213 (2012)

    Article  Google Scholar 

  14. Höpe, A, Atamas, T, Hünerhoff, D, Teichert, S, Hauer, KO, “ARGon 3: 3D Appearance Robot-based Gonioreflectometer at PTB.” Rev. Sci. Instrum., 83 (4) 045102 (2012)

    Article  Google Scholar 

  15. Kirchner, E, Cramer, W, “Making Sense of Measurement Geometries for Multi-angle Spectrophotometers.” Color Res. Appl., 37 (3) 186–198 (2012)

    Article  Google Scholar 

  16. Ferrero, A, Perales, E, Rabal, AM, Campos, J, Martínez-Verdú, FM, Chorro, E, Pons, A, “Color Representation and Interpretation of Special Effect Coatings.” J. Opt. Soc. Am. A, 31 (2) 436–447 (2014)

    Article  Google Scholar 

  17. Steenhoek, LE, “Process for Generating Bidirectional Reflectance Distribution Functions of Gonioapparent Materials with Limited Measurement Data.” US Patent 0,094,601 A1, 2010

  18. Ferrero, A, Rabal, A, Campos, J, Martínez-Verdú, F, Chorro, E, Perales, E, Pons, A, Hernanz, ML, “Spectral BRDF-based Determination of Proper Measurement Geometries to Characterize Color Shift of Special Effect Coatings.” J. Opt. Soc. Am. A, 30 (2) 206–214 (2013)

    Article  Google Scholar 

  19. Ferrero, A, Campos, J, Perales, E, Martínez-Verdú, FM, van der Lans, I, Kirchner, EJJ, “Global Color Estimation of Special-effect Coatings from Measurements by Commercially Available Portable Multiangle Spectrophotometers.” J. Opt. Soc. Am. A, 32 (1) 1–11 (2015)

    Article  Google Scholar 

  20. Strothkämper, C, Hauer, KO, Höpe, A, “How to Efficiently Characterize Special Effect Coatings.” J. Opt. Soc. Am. A, 33 (1) 1–8 (2016)

    Article  Google Scholar 

  21. Johnson, GM, Fairchild, MD, “A Top Down Description of S-CIELAB and CIEDE2000.” Color Res. Appl., 28 (6) 425–435 (2003)

    Article  Google Scholar 

  22. CIE, “Colorimetry.” CIE 15: 2004. CIE Central Bureau, Vienna, 2004

  23. CIE, A colour appearance model for colour management systems: CIECAM02, p. 159. CIE Publication, Paris (2004)

    Google Scholar 

  24. Melgosa, M, Martínez-García, J, Gómez-Robledo, L, Perales, E, Martínez-Verdú, FM, Dauser, T, “Measuring Color Differences in Automotive Samples with lLightness Flop: A Test of the AUDI2000 Color-difference Formula.” Opt. Expr., 22 (3) 3458–3467 (2014)

    Article  Google Scholar 

  25. Kirchner, E, Houweling, J, “Measuring Flake Orientation for Metallic Coatings.” Prog. Org. Coat., 64 (2) 287–293 (2009)

    Article  Google Scholar 

  26. Wißling, P, Metallic Effect Pigments: Fundamentals and Applications. Vincentz Network GmbH & Co. KG, Hannover (2006)

    Google Scholar 

  27. Rogelj, N, Goniospectrometric Analysis of Optically Complex Samples: A Study of Diffraction Gratings, Optically Variable Devices, and Coatings with Special Effect Pigments: Academic Dissertation (2015) http://epublications.uef.fi/pub/urn_isbn_978-952-61-1987-8/index_en.html

  28. Ferrero, A, Bernad, B, Campos, J, Perales, E, Velázquez, JL, Martínez-Verdú, FM, “Color Characterization of Coatings with Diffraction Pigments.” J. Opt. Soc. Am. A, 33 (10) 1978–1988 (2016)

    Article  Google Scholar 

  29. Perales, E, Chorro, E, Viqueira, V, Martínez-Verdú, FM, “Reproducibility Comparison among Multiangle Spectrophotometers.” Color Res. Appl., 38 (3) 160–167 (2013)

    Article  Google Scholar 

  30. Seubert, CM, Nichols, ME, Frey, J, Shtein, M, Thouless, MD, “The Characterization and Effects of Microstructure on the Appearance of Platelet-polymer Composite Coatings.” J. Mater. Sci., 51 (5) 2259–2273 (2016)

    Article  Google Scholar 

  31. Born, M, Wolf, E, Principles of Optics. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Xu, H., Zhang, F. et al. Color prediction of metallic coatings from measurements at common geometries in portable multiangle spectrophotometers. J Coat Technol Res 15, 957–966 (2018). https://doi.org/10.1007/s11998-017-0026-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-0026-3

Keywords

Navigation