Skip to main content
Log in

Recent progress of functional coating materials and technologies for polycarbonate

  • Review Paper
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Polycarbonate (PC) has been recognized as a promising alternative for inorganic glass thanks to high optical transparency, light weight, and excellent toughness. To expand the PC applications, especially in outdoor environments, and to impart new functionalities, surface coating can be an effective approach to overcome the intrinsic drawbacks of PC, such as low hardness and poor weathering performance. Coating techniques for PC are primarily classified into the wet chemical coating of organic–inorganic hybrid networks and the gaseous vacuum deposition of inorganic materials. Parallel to the development of electrical and optical devices and energy-efficient automobiles, PC with improved electrical conductivity, antireflection, and self-cleaning has been in high demand and has been achieved by well-controlled coating technologies of programmed functional materials. This article reviews the physical properties of the coating materials used for PC with emphasis on recent progress of coating technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. LeGrand, DG, Bendler, JT, Handbook of Polycarbonate Science and Technology. Marcel Dekker, New York (2000)

    Google Scholar 

  2. Jang, MJ, Park, CK, Lee, NY, “Modification of Polycarbonate with Hydrophilic/Hydrophobic Coatings for the Fabrication of Microdevices.” Sensor. Actuat. B, 193 599–607 (2014)

    Article  Google Scholar 

  3. Zhang, Y, Trinh, KTL, Yoo, IS, Lee, NY, “One-Step Glass-Like Coating of Polycarbonate for Seamless DNA Purification and Amplification on an Integrated Monolithic Microdevice.” Sensor. Actuat. B-Chem., 202 1281–1289 (2014)

    Article  Google Scholar 

  4. Seubert, C, Nietering, K, Nichols, M, Wykoff, R, Bollin, S, “An Overview of the Scratch Resistance of Automotive Coatings: Exterior Clearcoats and Polycarbonate Hardcoats.” Coatings, 2 221–234 (2014)

    Article  Google Scholar 

  5. Bewilogua, K, Brauer, G, Dietz, A, Gabler, J, Goch, G, Karpuschewski, B, Szyszka, B, “Surface Technology for Automotive Engineering.” CIRP Ann. Manuf. Technol., 58 608–627 (2009)

    Article  Google Scholar 

  6. Choi, MC, Kim, YK, Ha, CS, “Polymers for Flexible Displays: From Material Selection to Device Applications.” Prog. Polym. Sci., 33 581–630 (2008)

    Article  Google Scholar 

  7. Schmauder, T, Nauenburg, KD, Kruse, K, “Hard Coatings by Plasma CVD on Polycarbonate for Automotive and Optical Applications.” Thin Solid Films, 502 270–274 (2006)

    Article  Google Scholar 

  8. Charitidis, C, Laskarakis, A, Kassavetis, S, Gravalidis, C, Logothetidis, S, “Optical and Nanomechanical Study of Anti-Scratch Layers on Polycarbonate Lenses.” Superlattices Microst., 36 171–179 (2004)

    Article  Google Scholar 

  9. Urreaga, JM, Matías, MC, Lorenzo, V, de la Orden, MU, “Abrasion Resistance in the Tumble Test of Sol-Gel Hybrid Coatings for Ophthalmic Plastic Lenses.” Mater. Lett., 45 293–297 (2000)

    Article  Google Scholar 

  10. Katsamberis, D, Browall, K, Iacovangelo, C, Neumann Morgner, M, “Highly Durable Coatings for Automotive Polycarbonate Glazing.” Prog. Org. Coat., 34 130–134 (1998)

    Article  Google Scholar 

  11. Samson, F, “Ophthalmic Lens Coatings.” Surf. Coat. Technol., 81 79–86 (1996)

    Article  Google Scholar 

  12. Fukushima, M, Higuchi, K, Komori, H, Yamaya, M, Okumura, K, Chigita, K, Maruyama, Y, Takai, T, Isobe, Y, Kawamura, N, Nagai, T, “Plastic Article for Automotive Glazing.” US Patent 2012/0058347 A1 (2012)

  13. Gasworth, SM, Peters, M, Dujardin, R, “Polycarbonate Automotive Window Panels with Coating System Blocking UV and IR Radiation and Providing Abrasion Resistant Surface.” US Patent 6,797,384 B2 (2004)

  14. Westeppe, U, Weymans, G, Freitag, D, Idel, K-J, “Polycarbonate Mixtures in Optical Applications.” US Patent 5,132,154 (1992)

  15. Ruhlin, R, “Method of Forming an Opthalmic Lens from a Synthetic Material Blank.” US Patent 5,100,590 (1992)

  16. Diepens, M, Gijsman, P, “Influence of Light Intensity on the Photodegradation of Bisphenol A Polycarbonate.” Polym. Degrad. Stab., 94 34–38 (2009)

    Article  Google Scholar 

  17. Diepens, M, Gijsman, P, “Photodegradation of Bisphenol A Polycarbonate.” Polym. Degrad. Stab., 92 397–406 (2007)

    Article  Google Scholar 

  18. Rivaton, A, Mailhot, B, Soulestin, J, Varghese, H, Gardette, JL, “Comparison of the Photochemical and Thermal Degradation of Bisphenol-A Polycarbonate and Trimethylcyclohexane–Polycarbonate.” Polym. Degrad. Stab., 75 17–33 (2002)

    Article  Google Scholar 

  19. Rivaton, A, “Recent Advances in Bisphenol-A Polycarbonate Photodegradation.” Polym. Degrad. Stab., 49 163–179 (1995)

    Article  Google Scholar 

  20. Blaga, A, Yamasaki, RS, “Surface Microcracking Induced by Weathering of Polycarbonate Sheet.” J. Mater. Sci., 11 1513–1520 (1976)

    Article  Google Scholar 

  21. Hauenstein, O, Reiter, M, Agarwal, S, Rieger, B, Greiner, A, “Bio-based Polycarbonate from Limonene Oxide and CO2 with High Molecular Weight, Excellent Thermal Resistance, Hardness and Transparency.” Green Chem., 18 760–770 (2016)

    Article  Google Scholar 

  22. Rao, PS, Subrahmanya, S, Sathyanarayana, DN, “Polyaniline–Polycarbonate Blends Synthesized by Two Emulsion Pathways.” Synth. Met., 143 323–330 (2004)

    Article  Google Scholar 

  23. Seguch, T, Yagi, T, Ishikawa, S, Sano, Y, “New Material Synthesis by Radiation Processing at High Temperature-Polymer Modification with Improved Irradiation Technology.” Radiat. Phys. Chem., 63 35–40 (2002)

    Article  Google Scholar 

  24. Okamoto, M, “Synthesis and Properties of Polycarbonate-Poly(methylmethacrylate) Graft Copolymers by Polycondensation of Macromonomers.” J. Appl. Polym. Sci., 80 2670–2675 (2001)

    Article  Google Scholar 

  25. Brinker, CJ, Sherrer, GW, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego (1990)

    Google Scholar 

  26. Ciriminna, R, Fidalgo, A, Pandarus, V, Béland, F, Ilharco, LM, Pagliaro, M, “The Sol–Gel Route to Advanced Silica-based Materials and Recent Applications.” Chem. Rev., 113 6592–6620 (2013)

    Article  Google Scholar 

  27. Schulz, U, Kaiser, N, “Vacuum Coating of Plastic Optics.” Prog. Surf. Sci., 81 387–401 (2006)

    Article  Google Scholar 

  28. Choy, KL, “Chemical Vapour Deposition of Coatings.” Prog. Mater. Sci., 48 57–170 (2003)

    Article  Google Scholar 

  29. Chen, Z, Wu, LYL, “Scratch Damage Resistance of Silica-based Sol-Gel Coatings on Polymeric Substrates.” In: Friedrich, K, Schlarb, AK (eds.) Tribology of Polymeric Nanocomposites, pp. 467–511. Butterworth-Heinemann, Oxford (2013)

    Chapter  Google Scholar 

  30. Yahyaei, H, Mohseni, M, “Use of Nanoindentation and Nanoscratch Experiments to Reveal the Mechanical Behavior of Sol-Gel Prepared Nanocomposite Films on Polycarbonate.” Tribol. Int., 57 144–155 (2013)

    Article  Google Scholar 

  31. Chen, Z, Wu, LYL, Chwa, E, Tham, O, “Scratch Resistance of Brittle Thin Films on Compliant Substrates.” Mat. Sci. Eng. A Struct., 493 292–298 (2008)

    Article  Google Scholar 

  32. Wu, LYL, Chwa, E, Chen, Z, Zeng, XT, “A Study Towards Improving Mechanical Properties of Sol-Gel Coatings for Polycarbonate.” Thin Solid Films, 516 1056–1062 (2008)

    Article  Google Scholar 

  33. Bao, YW, Wang, W, Zhou, YC, “Investigation of the Relationship between Elastic Modulus and Hardness Based on Depth-Sensing Indentation Measurements.” Acta Mater., 52 5397–5404 (2004)

    Article  Google Scholar 

  34. Musil, J, Kunc, F, Zeman, H, Poláková, H, “Relationships between Hardness, Young’s Modulus and Elastic Recovery in Hard Nanocomposite Coatings.” Surf. Coat. Technol., 154 304–313 (2002)

    Article  Google Scholar 

  35. Mackenzie, JD, Bescher, EP, “Physical Properties of Sol-Gel Coatings.” J. Sol-Gel Sci. Technol., 19 23–29 (2000)

    Article  Google Scholar 

  36. Wang, D, Bierwagen, GP, “Sol-Gel Coatings on Metals for Corrosion Protection.” Prog. Org. Coat., 64 327–338 (2009)

    Article  Google Scholar 

  37. Schottner, G, “Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials.” Chem. Mater., 13 3422–3435 (2001)

    Article  Google Scholar 

  38. Wen, J, Vasudevan, VJ, Wilkes, GL, “Abrasion Resistant Inorganic/Organic Coating Materials Prepared by the Sol-Gel Method.” J. Sol-Gel Sci. Technol., 5 115–126 (1995)

    Article  Google Scholar 

  39. Song, KC, Park, JK, Kang, HU, Kim, SH, “Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane.” J. Sol-Gel Sci. Technol., 27 53–59 (2003)

    Article  Google Scholar 

  40. Chou, TP, Cao, G, “Adhesion of Sol-Gel-Derived Organic-Inorganic Hybrid Coatings on Polyester.” J. Sol-Gel Sci. Technol., 27 31–41 (2003)

    Article  Google Scholar 

  41. Deng, Q, Moore, RB, Mauritz, KA, “Nafion®/(SiO2, ORMOSIL, and Dimethylsiloxane) Hybrids Via In Situ Sol-Gel Reactions: Characterization of Fundamental Properties.” J. Appl. Polym. Sci., 68 747–763 (1998)

    Article  Google Scholar 

  42. Schmidt, H, “New Type of Non-Crystalline Solids between Inorganic and Organic Materials.” J. Non-Cryst. Solids, 73 681–691 (1985)

    Article  Google Scholar 

  43. Haas, KH, Wolter, H, “Synthesis, Properties and Applications of Inorganic-Organic Copolymers.” Curr. Opin. Solid St. M., 4 571–580 (1999)

    Article  Google Scholar 

  44. Haas, KH, Schwab, SA, Rose, K, Schottner, G, “Functionalized Coatings Based on Inorganic-Organic Polymers(ORMOCER®s) and Their Combination with Vapor Deposited Inorganic Thin Films.” Surf. Coat. Technol., 111 72–79 (1999)

    Article  Google Scholar 

  45. Kasemann, R, Schmidt, H, “Coatings for Mechanical and Chemical Protection Based on Organic-Inorganic Sol-Gel Nanocomposites.” New J. Chem., 18 1117–1123 (1994)

    Google Scholar 

  46. Hench, LL, West, JK, “The Sol-Gel Process.” Chem. Rev., 90 33–72 (1990)

    Article  Google Scholar 

  47. Khramov, AN, Balbyshev, VN, Voevodin, NN, Donley, MS, “Nanostructured Sol-Gel Derived Conversion Coatings Based on Epoxy- and Amino-silanes.” Prog. Org. Coat., 47 207–213 (2003)

    Article  Google Scholar 

  48. Hobble, D, Nacken, M, Schmidt, H, “A NMR Study on the Hydrolysis, Condensation and Epoxide Ring-Opening Reaction in Sols and Gels of the System Glycidoxypropyltrimethoxysilane-Water-Titaniumtetraethoxide.” J. Sol-Gel Sci. Technol., 12 169–179 (1998)

    Article  Google Scholar 

  49. Mashouf, G, Ebrahimi, M, “UV Curable Urethane Acrylate Coatings Formulation: Experimental Design Approach.” Pigm. Resin Technol., 43 61–68 (2014)

    Article  Google Scholar 

  50. Chibac, A, Melinte, V, Buruiana, T, Balan, L, Buruiana, EC, “One-Pot Synthesis of Photocrosslinked Sol-Gel Hybrid Composites Containing Silver Nanoparticles in Urethane-Acrylic Matrixes.” Chem. Eng. J., 200–202 577–588 (2012)

    Article  Google Scholar 

  51. Sangermano, M, Foix, D, Kortaberria, G, Messori, M, “Multifunctional Antistatic and Scratch Resistant UV-Cured Acrylic Coatings.” Prog. Org. Coat., 76 1191–1196 (2013)

    Article  Google Scholar 

  52. Nakayama, N, Hayashi, T, “Synthesis of Novel UV-Curable Difunctional Thiourethane Methacrylate and Studies on Organic-Inorganic Nanocomposite Hard Coatings for High Refractive Index Plastic Lenses.” Prog. Org. Coat., 62 274–284 (2008)

    Article  Google Scholar 

  53. Xu, J, Pang, W, Shi, W, “Synthesis of UV-Curable Organic-Inorganic Hybrid Urethane Acrylates and Properties of Cured Films.” Thin Solid Films, 514 69–75 (2006)

    Article  Google Scholar 

  54. Sepeur, S, Kunze, N, Werner, B, Schmidt, H, “UV Curable Hard Coatings on Plastics.” Thin Solid Films, 351 216–219 (1999)

    Article  Google Scholar 

  55. Kim, HD, Kim, TW, “Preparation and Properties of UV-Curable Polyurethane Acrylate Ionomers.” J. Appl. Polym. Sci., 67 2153–2162 (1998)

    Article  Google Scholar 

  56. Barletta, M, Pezzola, S, Vesco, S, Tagliaferri, V, Trovalusci, F, “Experimental Evaluation of Plowing and Scratch Hardness of Aqueous Two-Component Polyurethane (2 K-PUR) Coatings on Glass and Polycarbonate.” Prog. Org. Coat., 77 636–645 (2014)

    Article  Google Scholar 

  57. Xu, H, Qiu, F, Wang, Y, Wu, W, Yang, D, Guo, Q, “UV-Curable Waterborne Polyurethane-Acrylate: Preparation, Characterization and Properties.” Prog. Org. Coat., 73 47–53 (2012)

    Article  Google Scholar 

  58. Hwang, HD, Park, CH, Moon, JI, Kim, HJ, Masubuchi, T, “UV-Curing Behavior and Physical Properties of Waterborne UV-Curable Polycarbonate-Based Polyurethane Dispersion.” Prog. Org. Coat., 72 663–675 (2011)

    Article  Google Scholar 

  59. Masson, F, Decker, C, Jaworek, T, Schwalm, R, “UV-Radiation Curing of Waterbased Urethane-Acrylate Coatings.” Prog. Org. Coat., 39 115–126 (2000)

    Article  Google Scholar 

  60. Decker, C, Masson, F, Schwalm, R, “Weathering Resistance of Waterbased UV-Cured Polyurethane-Acrylate Coatings.” Polym. Degrad. Stab., 83 309–320 (2004)

    Article  Google Scholar 

  61. Decker, C, Masson, F, Schwalm, R, “Dual-Curing of Waterborne Urethane-Acrylate Coatings by UV and Thermal Processing.” Macromol. Mater. Eng., 288 17–28 (2003)

    Article  Google Scholar 

  62. Park, YJ, Lim, DH, Kim, HJ, Park, DS, Sung, IK, “UV- and Thermal-Curing Behaviors of Dual-Curable Adhesives Based on Epoxy Acrylate Oligomers.” Int. J. Adhes. Adhes., 29 710–717 (2009)

    Article  Google Scholar 

  63. Jeon, SJ, Lee, JJ, Kim, W, Chang, TS, Koo, SM, “Hard Coating Films Based on Organosilane-Modified Boehmite Nanoparticles under UV/Thermal Dual Curing.” Thin Solid Films, 516 3904–3909 (2008)

    Article  Google Scholar 

  64. Gomathi, N, Eswaraiah, C, Neogi, S, “Surface Modification of Polycarbonate by Radio-Frequency Plasma and Optimization of the Process Variables with Response Surface Methodology.” J. Appl. Polym. Sci., 114 1557–1566 (2009)

    Article  Google Scholar 

  65. Muir, BW, Thissen, H, Simon, GP, Murphy, PJ, Griesser, HJ, “Factors Affecting the Adhesion of Microwave Plasma Deposited Siloxane Films on Polycarbonate.” Thin Solid Films, 500 34–40 (2006)

    Article  Google Scholar 

  66. Hofrichter, A, Bulkin, P, Drévillon, B, “Plasma Treatment of Polycarbonate for Improved Adhesion.” J. Vac. Sci. Technol. A, 20 245–250 (2002)

    Article  Google Scholar 

  67. Zajíčková, L, Buršíková, V, Janča, J, “Protection Coatings for Polycarbonates Based on PECVD from Organosilicon Feeds.” Vacuum, 50 19–21 (1998)

    Article  Google Scholar 

  68. Klemberg-Sapieha, JE, Poitras, D, Martinu, L, Yamasaki, NLS, Lantman, CW, “Effect of Interface on the Characteristics of Functional Films Deposited on Polycarbonate in Dual-Frequency Plasma.” J. Vac. Sci. Technol. A, 15 985–991 (1997)

    Article  Google Scholar 

  69. Cui, L, Ranade, AN, Matos, MA, Pingree, LS, Frot, TJ, Dubois, G, Dauskardt, RH, “Atmospheric Plasma Deposited Dense Silica Coatings on Plastics.” ACS Appl. Mater. Inter., 4 6587–6598 (2012)

    Article  Google Scholar 

  70. Lin, YS, Liao, YH, Weng, MS, “Enhanced Scratch Resistance of Polycarbonate by Low Temperature Plasma-Polymerized Organosilica.” Thin Solid Films, 517 5224–5230 (2009)

    Article  Google Scholar 

  71. Bose, M, Bose, DN, Basa, DK, “Plasma Enhanced Growth, Composition and Refractive Index of Silicon Oxynitride Films.” Mater. Lett., 52 417–422 (2002)

    Article  Google Scholar 

  72. Zajíčková, L, Buršíková, V, Peřina, V, Macková, A, Subedi, D, Janča, J, “Plasma Modification of Polycarbonates.” Surf. Coat. Technol., 142–144 449–454 (2001)

    Article  Google Scholar 

  73. Yang, MR, Chen, KS, Hsu, ST, Wu, TZ, “Fabrication and Characteristics of SiO x Films by Plasma Chemical Vapor Deposition of Tetramethylorthosilicate.” Surf. Coat. Technol., 123 204–209 (2000)

    Article  Google Scholar 

  74. Rats, D, Martinu, L, von Stebut, J, “Mechanical Properties of Plasma-Deposited SiO x N y Coatings on Polymer Substrates Using Low Load Carrying Capacity Techniques.” Surf. Coat. Technol., 123 36–43 (2000)

    Article  Google Scholar 

  75. Rats, D, Hajek, V, Martinu, L, “Micro-Scratch Analysis and Mechanical Properties of Plasma-Deposited Silicon-Based Coatings on Polymer Substrates. Thin Solid Films, 340 33–39 (1999)

    Article  Google Scholar 

  76. Tsubone, D, Hasebe, T, Kamijo, A, Hotta, A, “Fracture Mechanics of Diamond-like Carbon (DLC) Films Coated on Flexible Polymer Substrates.” Surf. Coat. Technol., 201 6423–6430 (2007)

    Article  Google Scholar 

  77. Cuong, NK, Tahara, M, Yamauchi, N, Sone, T, “Diamond-like Carbon Films Deposited on Polymers by Plasma-Enhanced Chemical Vapor Deposition.” Surf. Coat. Technol., 174–175 1024–1028 (2003)

    Article  Google Scholar 

  78. Damasceno, JC, Camargo, SS, Jr, Cremona, M, “Optical and Mechanical Properties of DLC-Si Coatings on Polycarbonate.” Thin Solid Films, 433 199–204 (2009)

    Article  Google Scholar 

  79. Baek, SM, Shirafuji, T, Saito, N, Takai, O, “Adhesion Property of SiO x -Doped Diamond-like Carbon Films Deposited on Polycarbonate by Inductively Coupled Plasma Chemical Vapor Deposition.” Thin Solid Films, 519 6678–6682 (2011)

    Article  Google Scholar 

  80. Damasceno, JC, Camargo, SS, “Plasma Deposition and Characterization of Silicon Oxide-Containing Diamond-like Carbon Films Obtained from CH4:SiH4:O2 Gas Mixtures.” Thin Solid Films, 516 1890–1897 (2008)

    Article  Google Scholar 

  81. Damasceno, JC, Camargo, SS, Cremona, M, “Deposition and Evaluation of DLC–Si Protective Coatings for Polycarbonate Materials.” Thin Solid Films, 420–421 195–199 (2002)

    Article  Google Scholar 

  82. Damasceno, JC, Camargo, SS, Cremona, M, “DLC-Si Protective Coatings for Polycarbonates.” Mater. Res., 6 19–23 (2002)

    Article  Google Scholar 

  83. Varma, A, Palshin, V, Meletis, EI, “Structure–Property Relationship of Si-DLC Films.” Surf. Coat. Technol., 148 305–314 (2001)

    Article  Google Scholar 

  84. Liu, Y, Shao, H, “Properties of ZnO: Al Films Deposited on Polycarbonate Substrate.” Vacuum, 83 1435–1437 (2009)

    Article  Google Scholar 

  85. Yong, TK, Tou, TY, Teo, BS, “Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate.” Appl. Surf. Sci., 248 388–391 (2005)

    Article  Google Scholar 

  86. Ashfold, MNR, Claeyssens, F, Fuge, GM, Henley, SJ, “Pulsed Laser Ablation and Deposition of Thin Films.” Chem. Soc. Rev., 33 23–31 (2004)

    Article  Google Scholar 

  87. Izumi, H, Ishihara, T, Yoshioka, H, Motoyama, M, “Electrical Properties of Crystalline ITO Films Prepared at Room Temperature by Pulsed Laser Deposition on Plastic Substrates.” Thin Solid Films, 411 32–35 (2002)

    Article  Google Scholar 

  88. Gottmann, J, Kreutz, EW, “Pulsed Laser Deposition of Alumina and Zirconia Thin Films on Polymers and Glass as Optical and Protective Coatings.” Surf. Coat. Technol., 116–119 1189–1194 (1999)

    Article  Google Scholar 

  89. Oliver, WC, Pharr, GM, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology.” J. Mater. Res., 19 3–20 (2004)

    Article  Google Scholar 

  90. Wang, ZZ, Gu, P, Zhang, Z, “Indentation and Scratch Behavior of Nano-SiO2/Polycarbonate Composite Coating at the Micro/Nano-Scale.” Wear, 269 21–25 (2010)

    Article  Google Scholar 

  91. Boentoro, W, Pflug, A, Szyszka, B, “Scratch Resistance Analysis of Coatings on Glass and Polycarbonate.” Thin Solid Films, 517 3121–3125 (2009)

    Article  Google Scholar 

  92. Lahijania, YZK, Mohseni, M, Bastani, S, “Characterization of Mechanical Behavior of UV Cured Urethane Acrylate Nanocomposite Films Loaded with Silane Treated Nanosilica by the Aid of Nanoindentation and Nanoscratch Experiments.” Tribol. Int., 69 10–18 (2014)

    Article  Google Scholar 

  93. Zhang, H, Zhang, H, Tang, L, Zhang, Z, Gu, L, Xu, Y, Eger, C, “Wear-Resistant and Transparent Acrylate-based Coating with Highly Filled Nanosilica Particles.” Tribol. Int., 43 83–91 (2010)

    Article  Google Scholar 

  94. Zhang, L, Zeng, Z, Yang, J, Chen, Y, “Characterization and Properties of UV-Curable Polyurethane-Acrylate/Silica Hybrid Materials Prepared by the Sol-Gel Process.” Polym. Int., 53 1431–1435 (2004)

    Article  Google Scholar 

  95. Soloukhin, VA, Posthumus, W, Brokken-Zijp, JCM, Loos, J, With, G, “Mechanical Properties of Silica–(Meth)acrylate Hybrid Coatings on Polycarbonate Substrate.” Polymer, 43 6169–6181 (2002)

    Article  Google Scholar 

  96. Oh, IS, Park, NH, Suh, KD, “Mechanical and Surface Hardness Properties of Ultraviolet-Cured Polyurethane Acrylate Anionomer/Silica Composite Film.” J. Appl. Polym. Sci., 75 968–975 (2000)

    Article  Google Scholar 

  97. Barletta, M, Vesco, S, Puopolo, M, Tagliaferri, V, “High Performance Composite Coatings on Plastics: UV-Curable Cycloaliphatic Epoxy Resins Reinforced by Graphene or Graphene Derivatives.” Surf. Coat. Technol., 272 322–336 (2015)

    Article  Google Scholar 

  98. Kuo, SW, Chang, FC, “POSS Related Polymer Nanocomposites.” Prog. Polym. Sci., 36 1649–1696 (2011)

    Article  Google Scholar 

  99. Castelvetro, V, Ciardelli, F, Vita, C, Puppo, A, “Hybrid Nanocomposite Films from Mono- and Multi-Functional POSS Copolyacrylates in Miniemulsion.” Macromol. Rapid Commun., 27 619–625 (2006)

    Article  Google Scholar 

  100. Bizet, S, Galy, J, Gérard, JF, “Structure-Property Relationships in Organic-Inorganic Nanomaterials Based on Methacryl-POSS and Dimethacrylate Networks.” Macromolecules, 39 2574–2583 (2006)

    Article  Google Scholar 

  101. Zhao, Y, Schiraldi, DA, “Thermal and Mechanical Properties of Polyhedral Oligomeric Silsesquioxane (POSS)/Polycarbonate Composites.” Polymer, 46 11640–11647 (2005)

    Article  Google Scholar 

  102. Kopesky, ET, Haddad, TS, Cohen, RE, McKinley, GH, “Thermomechanical Properties of Poly(methyl methacrylate)s Containing Tethered and Untethered Polyhedral Oligomeric Silsesquioxanes.” Macromolecules, 37 8992–9004 (2004)

    Article  Google Scholar 

  103. Raut, HK, Dinachali, SS, He, AY, Ganesh, VA, Saifullah, MSM, Law, J, Ramakrishna, R, “Robust and Durable Polyhedral Oligomeric Silsesquioxane-Based Anti-Reflective Nanostructures with Broadband Quasi-Omnidirectional Properties.” Energ. Environ. Sci., 6 1929–1937 (2013)

    Article  Google Scholar 

  104. Jin, SB, Lee, JS, Choi, YS, Choi, IS, Han, JG, “High-Rate Deposition and Mechanical Properties of SiO x Film at Low Temperature by Plasma Enhanced Chemical Vapor Deposition with the Dual Frequencies Ultra High Frequency and High Frequency.” Thin Solid Films, 519 6334–6338 (2011)

    Article  Google Scholar 

  105. Lin, YS, Weng, MS, Chung, TW, Huang, C, “Enhanced Surface Hardness of Flexible Polycarbonate Substrates Using Plasma-Polymerized Organosilicon Oxynitride Films by Air Plasma Jet under Atmospheric Pressure.” Surf. Coat. Technol., 205 3856–3864 (2011)

    Article  Google Scholar 

  106. Lugscheider, E, Bobzin, K, Maes, M, Krämer, A, “On the Coating of Polymers—Basic Investigations.” Thin Solid Films, 459 313–317 (2004)

    Article  Google Scholar 

  107. Hegemann, D, Brunner, H, Oehr, C, “Deposition Rate and Three-Dimensional Uniformity of RF Plasma Deposited SiO2 Films.” Surf. Coat. Technol., 142–144 849–855 (2001)

    Article  Google Scholar 

  108. Rats, D, Martinu, L, von Stebut, J, “Mechanical Properties of Plasma-Deposited SiO x N y Coatings on Polymer Substrates Using Low Load Carrying Capacity Techniques.” Surf. Coat. Technol., 123 36–43 (2000)

    Article  Google Scholar 

  109. Yoonessi, M, Gaier, JR, “Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites.” ACS Nano, 4 7211–7220 (2010)

    Article  Google Scholar 

  110. Kim, HW, Macosko, CW, “Processing-Property Relationships of Polycarbonate/Graphene Composites.” Polymer, 50 3797–3809 (2009)

    Article  Google Scholar 

  111. Bauhofer, W, Kovacs, JZ, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites.” Compos. Sci. Technol., 69 1486–1498 (2009)

    Article  Google Scholar 

  112. Sung, YT, Han, MS, Jung, JW, Lee, HS, Kum, CK, Joo, J, Kim, WN, “Rheological and Electrical Properties of Polycarbonate/Multi-Walled Carbon Nanotube Composites.” Polymer, 47 4434–4439 (2006)

    Article  Google Scholar 

  113. Hornbostel, B, Pötschke, P, Kotz, J, Roth, S, “Single-Walled Carbon Nanotubes/Polycarbonate Composites: Basic Electrical and Mechanical Properties.” Phys. Stat. Sol (b), 243 3445–3451 (2006)

    Article  Google Scholar 

  114. Pötschke, P, Bhattacharyya, AR, Janke, A, “Carbon Nanotube-Filled Polycarbonate Composites Produced by Melt Mixing and Their Use in Blends with Polyethylene.” Carbon, 42 965–969 (2004)

    Article  Google Scholar 

  115. Pötschke, P, Abdel-Goad, M, Alig, I, Dudkin, S, Lellinger, D, “Rheological and Dielectrical Characterization of Melt Mixed Polycarbonate-Multiwalled Carbon Nanotube Composites.” Polymer, 45 8863–8870 (2004)

    Article  Google Scholar 

  116. Pötschke, P, Fornes, TD, Paul, DR, “Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites.” Polymer, 43 3247–3255 (2002)

    Article  Google Scholar 

  117. Jeon, SS, Han, SI, Jin, YH, Im, SS, “Polycarbonate-Based Conductive Film Prepared by Coating DBSA-Doped PEDOT/Sorbitol.” Synthetic Met., 148 287–291 (2005)

    Article  Google Scholar 

  118. Lee, WJ, Kim, YJ, Kaang, SY, “Electrical Properties of Polyaniline/Sulfonated Polycarbonate Blends.” Synthetic Met., 113 237–243 (2000)

    Article  Google Scholar 

  119. Roldughin, VI, Vysotskii, VV, “Percolation Properties of Metal-Filled Polymer Films. Structure and Mechanisms of Conductivity.” Prog. Org. Coat., 39 81–100 (2004)

    Article  Google Scholar 

  120. Patole, A, Lubineau, G, “Carbon Nanotubes with Silver Nanoparticle Decoration and Conductive Polymer Coating for Improving the Electrical Conductivity of Polycarbonate Composites.” Carbon, 81 720–730 (2015)

    Article  Google Scholar 

  121. Zhou, J, Lubineau, G, “Improving Electrical Conductivity in Polycarbonate Nanocomposites Using Highly Conductive PEDOT/PSS Coated MWCNTs.” ACS Appl. Mater. Inter., 5 6189–6200 (2013)

    Article  Google Scholar 

  122. Kyrylyuk, A, Hermant, M, Schilling, T, Klumperman, B, Koning, C, van der Schoot, P, “Controlling Electrical Percolation in Multicomponent Carbon Nanotube Dispersions.” Nat. Nanotechnol., 6 364–369 (2011)

    Article  Google Scholar 

  123. Hong, KP, Kim, SH, Yang, CW, Yun, WM, Nam, SJ, Jang, JY, “Photopatternable Poly(4-styrene sulfonicacid)-Wrapped MWNT Thin-Film Source/Drain Electrodes for Use in Organic Field-Effect Transistors.” ACS Appl. Mater. Inter., 3 74–79 (2011)

    Article  Google Scholar 

  124. Hermant, MC, Schoot, P, Klumperman, B, Koning, CE, “Probing the Cooperative Nature of the Conductive Components in Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)-Single-Walled Carbon Nanotube Composites.” ACS Nano, 4 2242–2248 (2010)

    Article  Google Scholar 

  125. Kim, DSRY, Kim, YS, Choi, KW, Grunlan, JC, Yu, CH, “Improved Thermoelectric Behavior of Nanotube-filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate).” ACS Nano, 4 513–523 (2010)

    Article  Google Scholar 

  126. Hermant, M, Klumperman, B, Kyrylyuk, A, van der Schoot, P, Koning, C, “Lowering the Percolation Threshold of Single-Walled Carbon Nanotubes Using Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Blends.” Soft Matter, 5 878–885 (2009)

    Article  Google Scholar 

  127. Amoli, HS, Shokatian, S, Abdous, M, “Thermal Annealing Combination with Pulse Nd-YAG Laser Treatment of ITO on Polycarbonate Using Spin Coating Process.” J. Sol-Gel Sci. Technol., 62 319–323 (2012)

    Article  Google Scholar 

  128. Yong, TK, Tou, TY, Teo, BS, “Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate.” Appl. Surf. Sci., 214 388–391 (2005)

    Article  Google Scholar 

  129. Kim, DI, KIM, SJ, “AFM Observation of ITO Thin Films Deposited on Polycarbonate Substrates by Sputter Type Negative Metal Ion Source.” Surf. Coat. Technol., 176 23–29 (2003)

    Article  Google Scholar 

  130. Kim, JS, Bae, JW, Kim, HJ, Lee, N-E, Yeom, GY, Oh, KH, “Effects of Oxygen Radical on the Properties of Indium Tin Oxide Thin Films Deposited at Room Temperature by Oxygen Ion Beam Assisted Evaporation.” Thin Solid Films, 377–378 103–108 (2000)

    Article  Google Scholar 

  131. Wu, WF, Chiou, BS, “Deposition of Indium Tin Oxide Films on Polycarbonate Substrates by Radio-Frequency Magnetron Sputtering.” Thin Solid Films, 298 221–227 (1997)

    Article  Google Scholar 

  132. Wu, WF, Chiou, BS, “Mechanical Properties of r.f. Magnetron Sputtered Indium Tin Oxide Films.” Thin Solid Films, 298 244–250 (1997)

    Article  Google Scholar 

  133. Kulkarni, AK, Schulz, KH, Lim, TS, Khan, M, “Electrical, Optical and Structural Characteristics of Indium-Tin-Oxide Thin Films Deposited on Glass and Polymer Substrates.” Thin Solid Films, 308–309 1–7 (1997)

    Article  Google Scholar 

  134. Minami, T, Sonohara, H, Kakumu, T, Takata, S, “Physics of Very Thin ITO Conducting Films with High Transparency Prepared by DC Magnetron Sputtering.” Thin Solid Films, 270 37–42 (1995)

    Article  Google Scholar 

  135. Asakuma, N, Fukui, T, Toki, M, “Low-Temperature Synthesis of ITO Thin Films Using an Ultraviolet Laser for Conductive Coating on Organic Polymer Substrates.” J. Sol-Gel Sci. Technol., 27 91–95 (2003)

    Article  Google Scholar 

  136. Aegerter, MA, Al-Dahoudi, N, “Wet-Chemical Processing of Transparent and Antiglare Conducting ITO Coating on Plastic Substrates.” J. Sol-Gel Sci. Technol., 27 81–89 (2003)

    Article  Google Scholar 

  137. Al-Dahoudi, N, Aegerter, MA, “Wet Coating Deposition of ITO Coatings on Plastic Substrates.” J. Sol-Gel Sci. Technol., 26 693–697 (2003)

    Article  Google Scholar 

  138. Al-Dahoudi, N, Bisht, H, Göbbert, C, Krajewski, T, Aegerter, MA, “Transparent Conducting, Anti-Static and Anti-Static-Anti-Glare Coatings on Plastic Substrates.” Thin Solid Films, 392 299–304 (2001)

    Article  Google Scholar 

  139. Burgard, D, Goebbert, C, Nass, R, “Synthesis of Nanocrystalline, Redispersable Antimony-Doped SnO2 Particles for the Preparation of Conductive, Transparent Coatings.” J. Sol-Gel Sci. Technol., 13 789–792 (1998)

    Article  Google Scholar 

  140. Sangermano, M, Foix, D, Kortaberria, G, Messori, M, “Multifunctional Antistatic and Scratch Resistant UV-Cured Acrylic Coatings.” Prog. Org. Coat., 76 1191–1196 (2013)

    Article  Google Scholar 

  141. Wouters, MEL, Wolfs, DP, van der Linde, MC, Hovens, JHP, Tinnemans, AHA, “Transparent UV Curable Antistatic Hybrid Coatings on Polycarbonate Prepared by the Sol-Gel Method.” Prog. Org. Coat., 51 312–320 (2004)

    Article  Google Scholar 

  142. Kim, HK, Kim, YB, Cho, JD, Hong, JW, “Synthesis and Characterization of Radiation-Curable Monomers for Antistatic Coatings.” Prog. Org. Coat., 48 34–42 (2003)

    Article  Google Scholar 

  143. Haas, KH, Amberg-Schwab, S, Rose, K, “Functionalized Coating Materials Based on Inorganic-Organic Polymers.” Thin Solid Films, 351 198–203 (1999)

    Article  Google Scholar 

  144. Jonas, F, Schrader, L, “Conductive Modifications of Polymers with Polypyrroles and Polythiophenes.” Synth. Met., 41 831–836 (1991)

    Article  Google Scholar 

  145. Gardner, SV, Jeanne, L, Klein, S, Brady, BK, “Electrically Conductive Composition and Elements Containing Solubilized Polyaniline Complex and Solvent Mixture.” US Patent 5,716,550 (1998)

  146. Jonas, F, Heywang, G, Schmidtberg, W, Heinze, J, Dietrich, M, “Method of Imparting Antistatic Properties to a Substrate by Coating the Substrate with a Novel Polythiophene.” UV Patent 5,035,926 (1991)

  147. Yoshizumi, M, “Antistatic Transparent Coating Composition.” US Patent 4,431,764 (1984)

  148. Glaubitt, W, Löbmann, P, “Antireflective Coatings Prepared by Sol-Gel Processing: Principles and Applications.” J. Eur. Ceram. Soc., 32 2995–2999 (2012)

    Article  Google Scholar 

  149. Raut, HK, Ganesh, VA, Nair, AS, Ramakrishna, S, “Anti-Reflective Coatings: A Critical, In-depth Review.” Energy Environ. Sci., 4 3779–3804 (2011)

    Article  Google Scholar 

  150. Schubert, MF, Mont, FW, Chhajed, S, Poxson, DJ, Kim, JK, Schubert, EF, “Design of Multilayer Antireflection Coatings Made from Co-Sputtered and Low-Refractive-Index Materials by Genetic Algorithm.” Opt. Express, 16 5290–5298 (2008)

    Article  Google Scholar 

  151. Schulz, U, “Review of Modern Techniques to Generate Antireflective Properties on Thermoplastic Polymers.” Appl. Optics, 45 1608–1618 (2006)

    Article  Google Scholar 

  152. Dobrowolski, JA, Poitras, D, Ma, P, Vakil, H, Acree, M, “Toward Perfect Antireflection Coatings: Numerical Investigation.” Appl. Optics, 41 3075–3083 (2002)

    Article  Google Scholar 

  153. Chen, D, “Anti-Reflection (AR) Coatings Made by Sol-Gel Processes: A Review.” Sol. Energy Mater. Sol. Cells, 68 313–336 (2001)

    Article  Google Scholar 

  154. Jewhurst, S, Kalyankar, N, “Magnesium Fluoride and Magnesium Oxyfluoride Based Anti-reflection Coating via Chemical Solution Deposition Processes.” US Patent 2014/0147594 A1 (2014)

  155. Tanaka, H, Kobayashi, M, Sakakibara, T, “Method of Producing Magnesium Fluoride Coating, Antireflection Coating, and Optical Element.” US Patent 8,399,069 B2 (2013)

  156. Hattori, H, “Anti-Reflection Surface with Particle Coating Deposited by Electrostatic Attraction.” Adv. Mater., 13 51–54 (2001)

    Article  Google Scholar 

  157. Walheim, S, Schäffer, E, Mylnek, J, Steiner, U, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings.” Science, 283 520–522 (1999)

    Article  Google Scholar 

  158. Uhlmann, DR, Suratwala, T, Davidson, K, Boulton, JM, Teowee, G, “Sol-Gel Derived Coatings on Glass.” J. Non-Cryst. Solids, 218 113–122 (1997)

    Article  Google Scholar 

  159. Minot, MJ, “Single-Layer, Gradient Refractive Index Antireflection Films Effective from 0.35 to 2.5 Microns.” J. Opt. Soc. Am., 66 515–519 (1976)

    Article  Google Scholar 

  160. Moghal, J, Kobler, J, Sauer, J, Best, J, Gardener, M, Watt, ARR, Wakefield, G, “High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles.” ACS Appl. Mater. Interfaces, 4 854–859 (2012)

    Article  Google Scholar 

  161. Vincent, A, Babu, S, Brinley, E, Karakoti, A, Deshpande, S, Seal, S, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique.” J. Phys. Chem. C, 111 8291–8298 (2007)

    Article  Google Scholar 

  162. Bautista, MC, Morales, A, “Silica Antireflective Films on Glass Produced by the Sol-Gel Method.” Sol. Energy Mater. Sol. Cells, 80 217–225 (2003)

    Article  Google Scholar 

  163. Menna, P, Francia, GD, Ferrara, VL, “Porous Silicon in Solar Cells: A Review and a Description of Its Application as an AR Coating.” Sol. Energy Mater. Sol. Cells, 37 13–24 (1995)

    Article  Google Scholar 

  164. Thomas, IM, “Method for the Preparation of Porous Silica Antireflection Coatings Varying in Refractive Index from 1.22 to 1.44.” Appl. Opt., 31 (28) 6145–6149 (1992)

    Article  Google Scholar 

  165. Galeotti, F, Trespidi, F, Timò, G, Pasini, M, “Broadband and Crack-Free Antireflection Coatings by Self-Assembled Moth Eye Patterns.” ACS Appl. Mater. Interfaces, 6 5827–5834 (2014)

    Article  Google Scholar 

  166. Oh, SS, Choi, CG, Kim, YS, “Fabrication of Micro-lens Arrays with Moth-Eye Antireflective Nanostructures Using Thermal Imprinting Process.” Microelectron. Eng., 87 2328–2331 (2010)

    Article  Google Scholar 

  167. Chen, Q, Hubbard, G, Shields, PA, Liu, C, Allsopp, DWE, Wang, WN, Abbot, S, “Broadband Moth-Eye Antireflection Coatings Fabricated by Low-cost Nanoimprinting.” Appl. Phys. Lett., 94 263118-1–263118-3 (2009)

    Google Scholar 

  168. Sun, CH, Jiang, P, Jiang, B, “Broadband Moth-Eye Antireflection Coatings on Silicon.” Appl. Phys. Lett., 92 (061112) 1–3 (2008)

    Google Scholar 

  169. Clapham, PB, Hutley, MC, “Reduction of Lens Reflection by the “Moth Eye” Principle.” Nature, 244 281–282 (1973)

    Article  Google Scholar 

  170. Mazur, M, Wojcieszak, D, Kaczmarek, D, Domaradzki, J, Song, S, Gibson, D, Placido, F, Mazur, P, Kalisz, M, Poniedzialek, A, “Functional Photocatalytically Active and Scratch Resistant Antireflective Coating Based on TiO2 and SiO2.” Appl. Surf. Sci., 380 165–171 (2016)

    Article  Google Scholar 

  171. Li, D, Wan, D, Zhu, X, Wang, Y, Han, Z, Han, S, Shan, Y, Huang, F, “Broadband Antireflection TiO2–SiO2 Stack Coatings with Refractive-Index-Grade Structure and Their Applications to Cu(In, Ga)Se2 Solar Cells.” Sol. Energy Mater. Sol. Cells, 130 505–512 (2014)

    Article  Google Scholar 

  172. Mazur, M, Wojcieszak, D, Domarazki, J, Kaczmarek, D, Song, S, Placido, F, “TiO2/SiO2 Multilayer as an Antireflective and Protective Coating Deposited by Microwave Assisted Magnetron Sputtering.” Opto-Electron. Rev., 21 233–238 (2013)

    Article  Google Scholar 

  173. Hinczewski, DS, Hinczewski, M, Tepehan, FZ, Tepehan, GG, “Optical Filters from SiO2 and TiO2 Multi-layers Using Sol–Gel Spin Coating Method.” Sol. Energy Mater. Sol. Cells, 87 181–196 (2005)

    Article  Google Scholar 

  174. Jeong, SH, Kim, JK, Kim, BS, Shim, SH, Lee, BT, “Characterization of SiO2 and TiO2 Films Prepared Using rf Magnetron Sputtering and Their Application to Anti-Reflection Coating.” Vacuum, 76 507–515 (2004)

    Article  Google Scholar 

  175. Martinet, C, Paillard, V, Gagnaire, A, Joseph, J, “Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition for Antireflection Coating.” J. Non-Cryst. Solids, 216 77–82 (1997)

    Article  Google Scholar 

  176. Chen, D, Yan, Y, Westernberg, E, Niebauer, D, Sakaitani, N, Chaudhuri, SR, Sato, Y, Takamatsu, M, “Development of Anti-Reflection (AR) Coating on Plastic Panels for Display Applications.” J. Sol-Gel Sci. Technol., 19 77–82 (2000)

    Article  Google Scholar 

  177. Chunder, A, Etcheverry, K, Wadsworth, S, Boreman, GD, Zhai, L, “Fabrication of Anti-Reflection Coatings on Plastics Using the Spraying Layer-by-Layer Self-Assembly Technique.” J. Soc. Inf. Display, 17 389–395 (2009)

    Article  Google Scholar 

  178. Hiller, J, Mendelsohn, JD, Rubner, MF, “Reversibly Erasable Nanoporous Anti-reflection Coatings from Polyelectrolyte Multilayers.” Nat. Mater., 1 59–63 (2002)

    Article  Google Scholar 

  179. Yang, S, Rubner, MF, “Micropatterning of Polymer Thin Films with pH-Sensitive and Cross-linkable Hydrogen-Bonded Polyelectrolyte Multilayers.” J. Am. Chem. Soc., 124 2100–2101 (2002)

    Article  Google Scholar 

  180. Yam, CM, Kakkar, AK, “Molecular Self-Assembly of Dihydroxy-Terminated Molecules via Acid-Base Hydrolytic Chemistry on Silica Surfaces: Step-by-Step Multilayered Film Construction.” Langmuir, 15 3807–3815 (1999)

    Article  Google Scholar 

  181. Weng, KW, Huang, YP, “Preparation of TiO2 Thin Films on Glass Surfaces with Self-Cleaning Characteristics for Solar Concentrators.” Surf. Coat. Technol., 231 201–204 (2013)

    Article  Google Scholar 

  182. Lai, Y, Tang, Y, Gong, J, Gong, D, Chi, L, Lin, C, Chen, Z, “Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-Fogging.” J. Mater. Chem., 22 7420–7426 (2012)

    Article  Google Scholar 

  183. Xi, B, Verma, LK, Li, J, Bhatia, CS, Danner, AJ, Yang, HS, Zeng, HC, “TiO2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications.” ACS Appl. Mater. Inter., 4 1093–1102 (2012)

    Article  Google Scholar 

  184. Euvananont, C, Junin, C, Inpor, K, Limthongkul, P, Thanachayanont, C, “TiO2 Optical Coating Layers for Self-Cleaning Applications.” Ceram. Int., 34 1067–1071 (2008)

    Article  Google Scholar 

  185. Latthe, S, Liu, S, Terashima, C, Nakata, K, Fujishima, A, “Transparent, Adherent, and Photocatalytic SiO2-TiO2 Coatings on Polycarbonate for Self-Cleaning Applications.” Coatings, 4 497–507 (2014)

    Article  Google Scholar 

  186. Fateh, R, Dillert, R, Bahnemann, D, “Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate.” Langmuir, 29 3730–3739 (2013)

    Article  Google Scholar 

  187. Kesmez, Ö, Erdem Çamurlu, H, Burunkaya, E, Arpaç, E, “Sol-Gel Preparation and Characterization of Anti-Reflective and Self-Cleaning SiO2-TiO2 Double-Layer Nanometric Films.” Sol. Energy Mater. Sol. Cells, 93 1833–1839 (2009)

    Article  Google Scholar 

  188. Liu, Z, Zhang, X, Murakami, T, Fujishima, A, “Sol-Gel TiO2/SiO2 Bilayer Films with Self-Cleaning and Antireflection Properties.” Sol. Energy Mater. Sol. Cells, 92 1434–1438 (2008)

    Article  Google Scholar 

  189. Guan, K, “Relationship between Photocatalytic Activity, Hydrophilicity and Self-Cleaning Effect of TiO2/SiO2 Films.” Surf. Coat. Technol., 191 155–160 (2005)

    Article  Google Scholar 

  190. Li, H, Jiang, M, Hu, D, Yan, Y, Li, Q, Dong, L, Xiong, C, “Solvent-Free Zirconia Nanofluid/Silica Single-Layer Multifunctional Hybrid Coatings.” Colloid. Surface. A, 464 26–32 (2015)

    Article  Google Scholar 

  191. Prado, R, Beobide, G, Marcaide, A, Goikoetxea, J, Aranzabe, A, “Development of Multifunctional Sol-Gel Coatings: Anti-Reflection Coatings with Enhanced Self-Cleaning Capacity.” Sol. Energy Mater. Sol. Cells, 94 1081–1088 (2010)

    Article  Google Scholar 

  192. Zhao, X, Zhao, Q, Yu, J, Liu, B, “Development of Multifunctional Photoactive Self-Cleaning Glasses.” J. Non-Cryst. Solids, 354 1424–1430 (2008)

    Article  Google Scholar 

  193. Okada, M, Yamada, Y, Jin, P, Tazawa, M, Yoshimura, K, “Fabrication of Multifunctional Coating Which Combines Low-E Property and Visible-Light-Responsive Photocatalytic Activity.” Thin Solid Films, 442 217–221 (2003)

    Article  Google Scholar 

  194. Kuhr, M, Bauer, S, Rothhaar, U, Wolff, D, “Coatings on Plastics with the PICVD Technology.” Thin Solid Films, 442 107–116 (2003)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Korea Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries (iPET) Grant 112050-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namil Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N. Recent progress of functional coating materials and technologies for polycarbonate. J Coat Technol Res 14, 21–34 (2017). https://doi.org/10.1007/s11998-016-9837-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9837-x

Keywords

Navigation