Advertisement

Journal of Coatings Technology and Research

, Volume 14, Issue 1, pp 21–34 | Cite as

Recent progress of functional coating materials and technologies for polycarbonate

Review Paper
  • 474 Downloads

Abstract

Polycarbonate (PC) has been recognized as a promising alternative for inorganic glass thanks to high optical transparency, light weight, and excellent toughness. To expand the PC applications, especially in outdoor environments, and to impart new functionalities, surface coating can be an effective approach to overcome the intrinsic drawbacks of PC, such as low hardness and poor weathering performance. Coating techniques for PC are primarily classified into the wet chemical coating of organic–inorganic hybrid networks and the gaseous vacuum deposition of inorganic materials. Parallel to the development of electrical and optical devices and energy-efficient automobiles, PC with improved electrical conductivity, antireflection, and self-cleaning has been in high demand and has been achieved by well-controlled coating technologies of programmed functional materials. This article reviews the physical properties of the coating materials used for PC with emphasis on recent progress of coating technologies.

Keywords

Polycarbonate Sol–gel Vacuum deposition Hardness Electrical conductivity Antireflection Self-cleaning 

Notes

Acknowledgment

This work was supported by the Korea Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries (iPET) Grant 112050-3.

References

  1. 1.
    LeGrand, DG, Bendler, JT, Handbook of Polycarbonate Science and Technology. Marcel Dekker, New York (2000)Google Scholar
  2. 2.
    Jang, MJ, Park, CK, Lee, NY, “Modification of Polycarbonate with Hydrophilic/Hydrophobic Coatings for the Fabrication of Microdevices.” Sensor. Actuat. B, 193 599–607 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y, Trinh, KTL, Yoo, IS, Lee, NY, “One-Step Glass-Like Coating of Polycarbonate for Seamless DNA Purification and Amplification on an Integrated Monolithic Microdevice.” Sensor. Actuat. B-Chem., 202 1281–1289 (2014)CrossRefGoogle Scholar
  4. 4.
    Seubert, C, Nietering, K, Nichols, M, Wykoff, R, Bollin, S, “An Overview of the Scratch Resistance of Automotive Coatings: Exterior Clearcoats and Polycarbonate Hardcoats.” Coatings, 2 221–234 (2014)CrossRefGoogle Scholar
  5. 5.
    Bewilogua, K, Brauer, G, Dietz, A, Gabler, J, Goch, G, Karpuschewski, B, Szyszka, B, “Surface Technology for Automotive Engineering.” CIRP Ann. Manuf. Technol., 58 608–627 (2009)CrossRefGoogle Scholar
  6. 6.
    Choi, MC, Kim, YK, Ha, CS, “Polymers for Flexible Displays: From Material Selection to Device Applications.” Prog. Polym. Sci., 33 581–630 (2008)CrossRefGoogle Scholar
  7. 7.
    Schmauder, T, Nauenburg, KD, Kruse, K, “Hard Coatings by Plasma CVD on Polycarbonate for Automotive and Optical Applications.” Thin Solid Films, 502 270–274 (2006)CrossRefGoogle Scholar
  8. 8.
    Charitidis, C, Laskarakis, A, Kassavetis, S, Gravalidis, C, Logothetidis, S, “Optical and Nanomechanical Study of Anti-Scratch Layers on Polycarbonate Lenses.” Superlattices Microst., 36 171–179 (2004)CrossRefGoogle Scholar
  9. 9.
    Urreaga, JM, Matías, MC, Lorenzo, V, de la Orden, MU, “Abrasion Resistance in the Tumble Test of Sol-Gel Hybrid Coatings for Ophthalmic Plastic Lenses.” Mater. Lett., 45 293–297 (2000)CrossRefGoogle Scholar
  10. 10.
    Katsamberis, D, Browall, K, Iacovangelo, C, Neumann Morgner, M, “Highly Durable Coatings for Automotive Polycarbonate Glazing.” Prog. Org. Coat., 34 130–134 (1998)CrossRefGoogle Scholar
  11. 11.
    Samson, F, “Ophthalmic Lens Coatings.” Surf. Coat. Technol., 81 79–86 (1996)CrossRefGoogle Scholar
  12. 12.
    Fukushima, M, Higuchi, K, Komori, H, Yamaya, M, Okumura, K, Chigita, K, Maruyama, Y, Takai, T, Isobe, Y, Kawamura, N, Nagai, T, “Plastic Article for Automotive Glazing.” US Patent 2012/0058347 A1 (2012)Google Scholar
  13. 13.
    Gasworth, SM, Peters, M, Dujardin, R, “Polycarbonate Automotive Window Panels with Coating System Blocking UV and IR Radiation and Providing Abrasion Resistant Surface.” US Patent 6,797,384 B2 (2004)Google Scholar
  14. 14.
    Westeppe, U, Weymans, G, Freitag, D, Idel, K-J, “Polycarbonate Mixtures in Optical Applications.” US Patent 5,132,154 (1992)Google Scholar
  15. 15.
    Ruhlin, R, “Method of Forming an Opthalmic Lens from a Synthetic Material Blank.” US Patent 5,100,590 (1992)Google Scholar
  16. 16.
    Diepens, M, Gijsman, P, “Influence of Light Intensity on the Photodegradation of Bisphenol A Polycarbonate.” Polym. Degrad. Stab., 94 34–38 (2009)CrossRefGoogle Scholar
  17. 17.
    Diepens, M, Gijsman, P, “Photodegradation of Bisphenol A Polycarbonate.” Polym. Degrad. Stab., 92 397–406 (2007)CrossRefGoogle Scholar
  18. 18.
    Rivaton, A, Mailhot, B, Soulestin, J, Varghese, H, Gardette, JL, “Comparison of the Photochemical and Thermal Degradation of Bisphenol-A Polycarbonate and Trimethylcyclohexane–Polycarbonate.” Polym. Degrad. Stab., 75 17–33 (2002)CrossRefGoogle Scholar
  19. 19.
    Rivaton, A, “Recent Advances in Bisphenol-A Polycarbonate Photodegradation.” Polym. Degrad. Stab., 49 163–179 (1995)CrossRefGoogle Scholar
  20. 20.
    Blaga, A, Yamasaki, RS, “Surface Microcracking Induced by Weathering of Polycarbonate Sheet.” J. Mater. Sci., 11 1513–1520 (1976)CrossRefGoogle Scholar
  21. 21.
    Hauenstein, O, Reiter, M, Agarwal, S, Rieger, B, Greiner, A, “Bio-based Polycarbonate from Limonene Oxide and CO2 with High Molecular Weight, Excellent Thermal Resistance, Hardness and Transparency.” Green Chem., 18 760–770 (2016)CrossRefGoogle Scholar
  22. 22.
    Rao, PS, Subrahmanya, S, Sathyanarayana, DN, “Polyaniline–Polycarbonate Blends Synthesized by Two Emulsion Pathways.” Synth. Met., 143 323–330 (2004)CrossRefGoogle Scholar
  23. 23.
    Seguch, T, Yagi, T, Ishikawa, S, Sano, Y, “New Material Synthesis by Radiation Processing at High Temperature-Polymer Modification with Improved Irradiation Technology.” Radiat. Phys. Chem., 63 35–40 (2002)CrossRefGoogle Scholar
  24. 24.
    Okamoto, M, “Synthesis and Properties of Polycarbonate-Poly(methylmethacrylate) Graft Copolymers by Polycondensation of Macromonomers.” J. Appl. Polym. Sci., 80 2670–2675 (2001)CrossRefGoogle Scholar
  25. 25.
    Brinker, CJ, Sherrer, GW, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego (1990)Google Scholar
  26. 26.
    Ciriminna, R, Fidalgo, A, Pandarus, V, Béland, F, Ilharco, LM, Pagliaro, M, “The Sol–Gel Route to Advanced Silica-based Materials and Recent Applications.” Chem. Rev., 113 6592–6620 (2013)CrossRefGoogle Scholar
  27. 27.
    Schulz, U, Kaiser, N, “Vacuum Coating of Plastic Optics.” Prog. Surf. Sci., 81 387–401 (2006)CrossRefGoogle Scholar
  28. 28.
    Choy, KL, “Chemical Vapour Deposition of Coatings.” Prog. Mater. Sci., 48 57–170 (2003)CrossRefGoogle Scholar
  29. 29.
    Chen, Z, Wu, LYL, “Scratch Damage Resistance of Silica-based Sol-Gel Coatings on Polymeric Substrates.” In: Friedrich, K, Schlarb, AK (eds.) Tribology of Polymeric Nanocomposites, pp. 467–511. Butterworth-Heinemann, Oxford (2013)CrossRefGoogle Scholar
  30. 30.
    Yahyaei, H, Mohseni, M, “Use of Nanoindentation and Nanoscratch Experiments to Reveal the Mechanical Behavior of Sol-Gel Prepared Nanocomposite Films on Polycarbonate.” Tribol. Int., 57 144–155 (2013)CrossRefGoogle Scholar
  31. 31.
    Chen, Z, Wu, LYL, Chwa, E, Tham, O, “Scratch Resistance of Brittle Thin Films on Compliant Substrates.” Mat. Sci. Eng. A Struct., 493 292–298 (2008)CrossRefGoogle Scholar
  32. 32.
    Wu, LYL, Chwa, E, Chen, Z, Zeng, XT, “A Study Towards Improving Mechanical Properties of Sol-Gel Coatings for Polycarbonate.” Thin Solid Films, 516 1056–1062 (2008)CrossRefGoogle Scholar
  33. 33.
    Bao, YW, Wang, W, Zhou, YC, “Investigation of the Relationship between Elastic Modulus and Hardness Based on Depth-Sensing Indentation Measurements.” Acta Mater., 52 5397–5404 (2004)CrossRefGoogle Scholar
  34. 34.
    Musil, J, Kunc, F, Zeman, H, Poláková, H, “Relationships between Hardness, Young’s Modulus and Elastic Recovery in Hard Nanocomposite Coatings.” Surf. Coat. Technol., 154 304–313 (2002)CrossRefGoogle Scholar
  35. 35.
    Mackenzie, JD, Bescher, EP, “Physical Properties of Sol-Gel Coatings.” J. Sol-Gel Sci. Technol., 19 23–29 (2000)CrossRefGoogle Scholar
  36. 36.
    Wang, D, Bierwagen, GP, “Sol-Gel Coatings on Metals for Corrosion Protection.” Prog. Org. Coat., 64 327–338 (2009)CrossRefGoogle Scholar
  37. 37.
    Schottner, G, “Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials.” Chem. Mater., 13 3422–3435 (2001)CrossRefGoogle Scholar
  38. 38.
    Wen, J, Vasudevan, VJ, Wilkes, GL, “Abrasion Resistant Inorganic/Organic Coating Materials Prepared by the Sol-Gel Method.” J. Sol-Gel Sci. Technol., 5 115–126 (1995)CrossRefGoogle Scholar
  39. 39.
    Song, KC, Park, JK, Kang, HU, Kim, SH, “Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane.” J. Sol-Gel Sci. Technol., 27 53–59 (2003)CrossRefGoogle Scholar
  40. 40.
    Chou, TP, Cao, G, “Adhesion of Sol-Gel-Derived Organic-Inorganic Hybrid Coatings on Polyester.” J. Sol-Gel Sci. Technol., 27 31–41 (2003)CrossRefGoogle Scholar
  41. 41.
    Deng, Q, Moore, RB, Mauritz, KA, “Nafion®/(SiO2, ORMOSIL, and Dimethylsiloxane) Hybrids Via In Situ Sol-Gel Reactions: Characterization of Fundamental Properties.” J. Appl. Polym. Sci., 68 747–763 (1998)CrossRefGoogle Scholar
  42. 42.
    Schmidt, H, “New Type of Non-Crystalline Solids between Inorganic and Organic Materials.” J. Non-Cryst. Solids, 73 681–691 (1985)CrossRefGoogle Scholar
  43. 43.
    Haas, KH, Wolter, H, “Synthesis, Properties and Applications of Inorganic-Organic Copolymers.” Curr. Opin. Solid St. M., 4 571–580 (1999)CrossRefGoogle Scholar
  44. 44.
    Haas, KH, Schwab, SA, Rose, K, Schottner, G, “Functionalized Coatings Based on Inorganic-Organic Polymers(ORMOCER®s) and Their Combination with Vapor Deposited Inorganic Thin Films.” Surf. Coat. Technol., 111 72–79 (1999)CrossRefGoogle Scholar
  45. 45.
    Kasemann, R, Schmidt, H, “Coatings for Mechanical and Chemical Protection Based on Organic-Inorganic Sol-Gel Nanocomposites.” New J. Chem., 18 1117–1123 (1994)Google Scholar
  46. 46.
    Hench, LL, West, JK, “The Sol-Gel Process.” Chem. Rev., 90 33–72 (1990)CrossRefGoogle Scholar
  47. 47.
    Khramov, AN, Balbyshev, VN, Voevodin, NN, Donley, MS, “Nanostructured Sol-Gel Derived Conversion Coatings Based on Epoxy- and Amino-silanes.” Prog. Org. Coat., 47 207–213 (2003)CrossRefGoogle Scholar
  48. 48.
    Hobble, D, Nacken, M, Schmidt, H, “A NMR Study on the Hydrolysis, Condensation and Epoxide Ring-Opening Reaction in Sols and Gels of the System Glycidoxypropyltrimethoxysilane-Water-Titaniumtetraethoxide.” J. Sol-Gel Sci. Technol., 12 169–179 (1998)CrossRefGoogle Scholar
  49. 49.
    Mashouf, G, Ebrahimi, M, “UV Curable Urethane Acrylate Coatings Formulation: Experimental Design Approach.” Pigm. Resin Technol., 43 61–68 (2014)CrossRefGoogle Scholar
  50. 50.
    Chibac, A, Melinte, V, Buruiana, T, Balan, L, Buruiana, EC, “One-Pot Synthesis of Photocrosslinked Sol-Gel Hybrid Composites Containing Silver Nanoparticles in Urethane-Acrylic Matrixes.” Chem. Eng. J., 200–202 577–588 (2012)CrossRefGoogle Scholar
  51. 51.
    Sangermano, M, Foix, D, Kortaberria, G, Messori, M, “Multifunctional Antistatic and Scratch Resistant UV-Cured Acrylic Coatings.” Prog. Org. Coat., 76 1191–1196 (2013)CrossRefGoogle Scholar
  52. 52.
    Nakayama, N, Hayashi, T, “Synthesis of Novel UV-Curable Difunctional Thiourethane Methacrylate and Studies on Organic-Inorganic Nanocomposite Hard Coatings for High Refractive Index Plastic Lenses.” Prog. Org. Coat., 62 274–284 (2008)CrossRefGoogle Scholar
  53. 53.
    Xu, J, Pang, W, Shi, W, “Synthesis of UV-Curable Organic-Inorganic Hybrid Urethane Acrylates and Properties of Cured Films.” Thin Solid Films, 514 69–75 (2006)CrossRefGoogle Scholar
  54. 54.
    Sepeur, S, Kunze, N, Werner, B, Schmidt, H, “UV Curable Hard Coatings on Plastics.” Thin Solid Films, 351 216–219 (1999)CrossRefGoogle Scholar
  55. 55.
    Kim, HD, Kim, TW, “Preparation and Properties of UV-Curable Polyurethane Acrylate Ionomers.” J. Appl. Polym. Sci., 67 2153–2162 (1998)CrossRefGoogle Scholar
  56. 56.
    Barletta, M, Pezzola, S, Vesco, S, Tagliaferri, V, Trovalusci, F, “Experimental Evaluation of Plowing and Scratch Hardness of Aqueous Two-Component Polyurethane (2 K-PUR) Coatings on Glass and Polycarbonate.” Prog. Org. Coat., 77 636–645 (2014)CrossRefGoogle Scholar
  57. 57.
    Xu, H, Qiu, F, Wang, Y, Wu, W, Yang, D, Guo, Q, “UV-Curable Waterborne Polyurethane-Acrylate: Preparation, Characterization and Properties.” Prog. Org. Coat., 73 47–53 (2012)CrossRefGoogle Scholar
  58. 58.
    Hwang, HD, Park, CH, Moon, JI, Kim, HJ, Masubuchi, T, “UV-Curing Behavior and Physical Properties of Waterborne UV-Curable Polycarbonate-Based Polyurethane Dispersion.” Prog. Org. Coat., 72 663–675 (2011)CrossRefGoogle Scholar
  59. 59.
    Masson, F, Decker, C, Jaworek, T, Schwalm, R, “UV-Radiation Curing of Waterbased Urethane-Acrylate Coatings.” Prog. Org. Coat., 39 115–126 (2000)CrossRefGoogle Scholar
  60. 60.
    Decker, C, Masson, F, Schwalm, R, “Weathering Resistance of Waterbased UV-Cured Polyurethane-Acrylate Coatings.” Polym. Degrad. Stab., 83 309–320 (2004)CrossRefGoogle Scholar
  61. 61.
    Decker, C, Masson, F, Schwalm, R, “Dual-Curing of Waterborne Urethane-Acrylate Coatings by UV and Thermal Processing.” Macromol. Mater. Eng., 288 17–28 (2003)CrossRefGoogle Scholar
  62. 62.
    Park, YJ, Lim, DH, Kim, HJ, Park, DS, Sung, IK, “UV- and Thermal-Curing Behaviors of Dual-Curable Adhesives Based on Epoxy Acrylate Oligomers.” Int. J. Adhes. Adhes., 29 710–717 (2009)CrossRefGoogle Scholar
  63. 63.
    Jeon, SJ, Lee, JJ, Kim, W, Chang, TS, Koo, SM, “Hard Coating Films Based on Organosilane-Modified Boehmite Nanoparticles under UV/Thermal Dual Curing.” Thin Solid Films, 516 3904–3909 (2008)CrossRefGoogle Scholar
  64. 64.
    Gomathi, N, Eswaraiah, C, Neogi, S, “Surface Modification of Polycarbonate by Radio-Frequency Plasma and Optimization of the Process Variables with Response Surface Methodology.” J. Appl. Polym. Sci., 114 1557–1566 (2009)CrossRefGoogle Scholar
  65. 65.
    Muir, BW, Thissen, H, Simon, GP, Murphy, PJ, Griesser, HJ, “Factors Affecting the Adhesion of Microwave Plasma Deposited Siloxane Films on Polycarbonate.” Thin Solid Films, 500 34–40 (2006)CrossRefGoogle Scholar
  66. 66.
    Hofrichter, A, Bulkin, P, Drévillon, B, “Plasma Treatment of Polycarbonate for Improved Adhesion.” J. Vac. Sci. Technol. A, 20 245–250 (2002)CrossRefGoogle Scholar
  67. 67.
    Zajíčková, L, Buršíková, V, Janča, J, “Protection Coatings for Polycarbonates Based on PECVD from Organosilicon Feeds.” Vacuum, 50 19–21 (1998)CrossRefGoogle Scholar
  68. 68.
    Klemberg-Sapieha, JE, Poitras, D, Martinu, L, Yamasaki, NLS, Lantman, CW, “Effect of Interface on the Characteristics of Functional Films Deposited on Polycarbonate in Dual-Frequency Plasma.” J. Vac. Sci. Technol. A, 15 985–991 (1997)CrossRefGoogle Scholar
  69. 69.
    Cui, L, Ranade, AN, Matos, MA, Pingree, LS, Frot, TJ, Dubois, G, Dauskardt, RH, “Atmospheric Plasma Deposited Dense Silica Coatings on Plastics.” ACS Appl. Mater. Inter., 4 6587–6598 (2012)CrossRefGoogle Scholar
  70. 70.
    Lin, YS, Liao, YH, Weng, MS, “Enhanced Scratch Resistance of Polycarbonate by Low Temperature Plasma-Polymerized Organosilica.” Thin Solid Films, 517 5224–5230 (2009)CrossRefGoogle Scholar
  71. 71.
    Bose, M, Bose, DN, Basa, DK, “Plasma Enhanced Growth, Composition and Refractive Index of Silicon Oxynitride Films.” Mater. Lett., 52 417–422 (2002)CrossRefGoogle Scholar
  72. 72.
    Zajíčková, L, Buršíková, V, Peřina, V, Macková, A, Subedi, D, Janča, J, “Plasma Modification of Polycarbonates.” Surf. Coat. Technol., 142–144 449–454 (2001)CrossRefGoogle Scholar
  73. 73.
    Yang, MR, Chen, KS, Hsu, ST, Wu, TZ, “Fabrication and Characteristics of SiOx Films by Plasma Chemical Vapor Deposition of Tetramethylorthosilicate.” Surf. Coat. Technol., 123 204–209 (2000)CrossRefGoogle Scholar
  74. 74.
    Rats, D, Martinu, L, von Stebut, J, “Mechanical Properties of Plasma-Deposited SiOxNy Coatings on Polymer Substrates Using Low Load Carrying Capacity Techniques.” Surf. Coat. Technol., 123 36–43 (2000)CrossRefGoogle Scholar
  75. 75.
    Rats, D, Hajek, V, Martinu, L, “Micro-Scratch Analysis and Mechanical Properties of Plasma-Deposited Silicon-Based Coatings on Polymer Substrates. Thin Solid Films, 340 33–39 (1999)CrossRefGoogle Scholar
  76. 76.
    Tsubone, D, Hasebe, T, Kamijo, A, Hotta, A, “Fracture Mechanics of Diamond-like Carbon (DLC) Films Coated on Flexible Polymer Substrates.” Surf. Coat. Technol., 201 6423–6430 (2007)CrossRefGoogle Scholar
  77. 77.
    Cuong, NK, Tahara, M, Yamauchi, N, Sone, T, “Diamond-like Carbon Films Deposited on Polymers by Plasma-Enhanced Chemical Vapor Deposition.” Surf. Coat. Technol., 174–175 1024–1028 (2003)CrossRefGoogle Scholar
  78. 78.
    Damasceno, JC, Camargo, SS, Jr, Cremona, M, “Optical and Mechanical Properties of DLC-Si Coatings on Polycarbonate.” Thin Solid Films, 433 199–204 (2009)CrossRefGoogle Scholar
  79. 79.
    Baek, SM, Shirafuji, T, Saito, N, Takai, O, “Adhesion Property of SiOx-Doped Diamond-like Carbon Films Deposited on Polycarbonate by Inductively Coupled Plasma Chemical Vapor Deposition.” Thin Solid Films, 519 6678–6682 (2011)CrossRefGoogle Scholar
  80. 80.
    Damasceno, JC, Camargo, SS, “Plasma Deposition and Characterization of Silicon Oxide-Containing Diamond-like Carbon Films Obtained from CH4:SiH4:O2 Gas Mixtures.” Thin Solid Films, 516 1890–1897 (2008)CrossRefGoogle Scholar
  81. 81.
    Damasceno, JC, Camargo, SS, Cremona, M, “Deposition and Evaluation of DLC–Si Protective Coatings for Polycarbonate Materials.” Thin Solid Films, 420–421 195–199 (2002)CrossRefGoogle Scholar
  82. 82.
    Damasceno, JC, Camargo, SS, Cremona, M, “DLC-Si Protective Coatings for Polycarbonates.” Mater. Res., 6 19–23 (2002)CrossRefGoogle Scholar
  83. 83.
    Varma, A, Palshin, V, Meletis, EI, “Structure–Property Relationship of Si-DLC Films.” Surf. Coat. Technol., 148 305–314 (2001)CrossRefGoogle Scholar
  84. 84.
    Liu, Y, Shao, H, “Properties of ZnO: Al Films Deposited on Polycarbonate Substrate.” Vacuum, 83 1435–1437 (2009)CrossRefGoogle Scholar
  85. 85.
    Yong, TK, Tou, TY, Teo, BS, “Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate.” Appl. Surf. Sci., 248 388–391 (2005)CrossRefGoogle Scholar
  86. 86.
    Ashfold, MNR, Claeyssens, F, Fuge, GM, Henley, SJ, “Pulsed Laser Ablation and Deposition of Thin Films.” Chem. Soc. Rev., 33 23–31 (2004)CrossRefGoogle Scholar
  87. 87.
    Izumi, H, Ishihara, T, Yoshioka, H, Motoyama, M, “Electrical Properties of Crystalline ITO Films Prepared at Room Temperature by Pulsed Laser Deposition on Plastic Substrates.” Thin Solid Films, 411 32–35 (2002)CrossRefGoogle Scholar
  88. 88.
    Gottmann, J, Kreutz, EW, “Pulsed Laser Deposition of Alumina and Zirconia Thin Films on Polymers and Glass as Optical and Protective Coatings.” Surf. Coat. Technol., 116–119 1189–1194 (1999)CrossRefGoogle Scholar
  89. 89.
    Oliver, WC, Pharr, GM, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology.” J. Mater. Res., 19 3–20 (2004)CrossRefGoogle Scholar
  90. 90.
    Wang, ZZ, Gu, P, Zhang, Z, “Indentation and Scratch Behavior of Nano-SiO2/Polycarbonate Composite Coating at the Micro/Nano-Scale.” Wear, 269 21–25 (2010)CrossRefGoogle Scholar
  91. 91.
    Boentoro, W, Pflug, A, Szyszka, B, “Scratch Resistance Analysis of Coatings on Glass and Polycarbonate.” Thin Solid Films, 517 3121–3125 (2009)CrossRefGoogle Scholar
  92. 92.
    Lahijania, YZK, Mohseni, M, Bastani, S, “Characterization of Mechanical Behavior of UV Cured Urethane Acrylate Nanocomposite Films Loaded with Silane Treated Nanosilica by the Aid of Nanoindentation and Nanoscratch Experiments.” Tribol. Int., 69 10–18 (2014)CrossRefGoogle Scholar
  93. 93.
    Zhang, H, Zhang, H, Tang, L, Zhang, Z, Gu, L, Xu, Y, Eger, C, “Wear-Resistant and Transparent Acrylate-based Coating with Highly Filled Nanosilica Particles.” Tribol. Int., 43 83–91 (2010)CrossRefGoogle Scholar
  94. 94.
    Zhang, L, Zeng, Z, Yang, J, Chen, Y, “Characterization and Properties of UV-Curable Polyurethane-Acrylate/Silica Hybrid Materials Prepared by the Sol-Gel Process.” Polym. Int., 53 1431–1435 (2004)CrossRefGoogle Scholar
  95. 95.
    Soloukhin, VA, Posthumus, W, Brokken-Zijp, JCM, Loos, J, With, G, “Mechanical Properties of Silica–(Meth)acrylate Hybrid Coatings on Polycarbonate Substrate.” Polymer, 43 6169–6181 (2002)CrossRefGoogle Scholar
  96. 96.
    Oh, IS, Park, NH, Suh, KD, “Mechanical and Surface Hardness Properties of Ultraviolet-Cured Polyurethane Acrylate Anionomer/Silica Composite Film.” J. Appl. Polym. Sci., 75 968–975 (2000)CrossRefGoogle Scholar
  97. 97.
    Barletta, M, Vesco, S, Puopolo, M, Tagliaferri, V, “High Performance Composite Coatings on Plastics: UV-Curable Cycloaliphatic Epoxy Resins Reinforced by Graphene or Graphene Derivatives.” Surf. Coat. Technol., 272 322–336 (2015)CrossRefGoogle Scholar
  98. 98.
    Kuo, SW, Chang, FC, “POSS Related Polymer Nanocomposites.” Prog. Polym. Sci., 36 1649–1696 (2011)CrossRefGoogle Scholar
  99. 99.
    Castelvetro, V, Ciardelli, F, Vita, C, Puppo, A, “Hybrid Nanocomposite Films from Mono- and Multi-Functional POSS Copolyacrylates in Miniemulsion.” Macromol. Rapid Commun., 27 619–625 (2006)CrossRefGoogle Scholar
  100. 100.
    Bizet, S, Galy, J, Gérard, JF, “Structure-Property Relationships in Organic-Inorganic Nanomaterials Based on Methacryl-POSS and Dimethacrylate Networks.” Macromolecules, 39 2574–2583 (2006)CrossRefGoogle Scholar
  101. 101.
    Zhao, Y, Schiraldi, DA, “Thermal and Mechanical Properties of Polyhedral Oligomeric Silsesquioxane (POSS)/Polycarbonate Composites.” Polymer, 46 11640–11647 (2005)CrossRefGoogle Scholar
  102. 102.
    Kopesky, ET, Haddad, TS, Cohen, RE, McKinley, GH, “Thermomechanical Properties of Poly(methyl methacrylate)s Containing Tethered and Untethered Polyhedral Oligomeric Silsesquioxanes.” Macromolecules, 37 8992–9004 (2004)CrossRefGoogle Scholar
  103. 103.
    Raut, HK, Dinachali, SS, He, AY, Ganesh, VA, Saifullah, MSM, Law, J, Ramakrishna, R, “Robust and Durable Polyhedral Oligomeric Silsesquioxane-Based Anti-Reflective Nanostructures with Broadband Quasi-Omnidirectional Properties.” Energ. Environ. Sci., 6 1929–1937 (2013)CrossRefGoogle Scholar
  104. 104.
    Jin, SB, Lee, JS, Choi, YS, Choi, IS, Han, JG, “High-Rate Deposition and Mechanical Properties of SiOx Film at Low Temperature by Plasma Enhanced Chemical Vapor Deposition with the Dual Frequencies Ultra High Frequency and High Frequency.” Thin Solid Films, 519 6334–6338 (2011)CrossRefGoogle Scholar
  105. 105.
    Lin, YS, Weng, MS, Chung, TW, Huang, C, “Enhanced Surface Hardness of Flexible Polycarbonate Substrates Using Plasma-Polymerized Organosilicon Oxynitride Films by Air Plasma Jet under Atmospheric Pressure.” Surf. Coat. Technol., 205 3856–3864 (2011)CrossRefGoogle Scholar
  106. 106.
    Lugscheider, E, Bobzin, K, Maes, M, Krämer, A, “On the Coating of Polymers—Basic Investigations.” Thin Solid Films, 459 313–317 (2004)CrossRefGoogle Scholar
  107. 107.
    Hegemann, D, Brunner, H, Oehr, C, “Deposition Rate and Three-Dimensional Uniformity of RF Plasma Deposited SiO2 Films.” Surf. Coat. Technol., 142–144 849–855 (2001)CrossRefGoogle Scholar
  108. 108.
    Rats, D, Martinu, L, von Stebut, J, “Mechanical Properties of Plasma-Deposited SiOxNy Coatings on Polymer Substrates Using Low Load Carrying Capacity Techniques.” Surf. Coat. Technol., 123 36–43 (2000)CrossRefGoogle Scholar
  109. 109.
    Yoonessi, M, Gaier, JR, “Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites.” ACS Nano, 4 7211–7220 (2010)CrossRefGoogle Scholar
  110. 110.
    Kim, HW, Macosko, CW, “Processing-Property Relationships of Polycarbonate/Graphene Composites.” Polymer, 50 3797–3809 (2009)CrossRefGoogle Scholar
  111. 111.
    Bauhofer, W, Kovacs, JZ, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites.” Compos. Sci. Technol., 69 1486–1498 (2009)CrossRefGoogle Scholar
  112. 112.
    Sung, YT, Han, MS, Jung, JW, Lee, HS, Kum, CK, Joo, J, Kim, WN, “Rheological and Electrical Properties of Polycarbonate/Multi-Walled Carbon Nanotube Composites.” Polymer, 47 4434–4439 (2006)CrossRefGoogle Scholar
  113. 113.
    Hornbostel, B, Pötschke, P, Kotz, J, Roth, S, “Single-Walled Carbon Nanotubes/Polycarbonate Composites: Basic Electrical and Mechanical Properties.” Phys. Stat. Sol (b), 243 3445–3451 (2006)CrossRefGoogle Scholar
  114. 114.
    Pötschke, P, Bhattacharyya, AR, Janke, A, “Carbon Nanotube-Filled Polycarbonate Composites Produced by Melt Mixing and Their Use in Blends with Polyethylene.” Carbon, 42 965–969 (2004)CrossRefGoogle Scholar
  115. 115.
    Pötschke, P, Abdel-Goad, M, Alig, I, Dudkin, S, Lellinger, D, “Rheological and Dielectrical Characterization of Melt Mixed Polycarbonate-Multiwalled Carbon Nanotube Composites.” Polymer, 45 8863–8870 (2004)CrossRefGoogle Scholar
  116. 116.
    Pötschke, P, Fornes, TD, Paul, DR, “Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites.” Polymer, 43 3247–3255 (2002)CrossRefGoogle Scholar
  117. 117.
    Jeon, SS, Han, SI, Jin, YH, Im, SS, “Polycarbonate-Based Conductive Film Prepared by Coating DBSA-Doped PEDOT/Sorbitol.” Synthetic Met., 148 287–291 (2005)CrossRefGoogle Scholar
  118. 118.
    Lee, WJ, Kim, YJ, Kaang, SY, “Electrical Properties of Polyaniline/Sulfonated Polycarbonate Blends.” Synthetic Met., 113 237–243 (2000)CrossRefGoogle Scholar
  119. 119.
    Roldughin, VI, Vysotskii, VV, “Percolation Properties of Metal-Filled Polymer Films. Structure and Mechanisms of Conductivity.” Prog. Org. Coat., 39 81–100 (2004)CrossRefGoogle Scholar
  120. 120.
    Patole, A, Lubineau, G, “Carbon Nanotubes with Silver Nanoparticle Decoration and Conductive Polymer Coating for Improving the Electrical Conductivity of Polycarbonate Composites.” Carbon, 81 720–730 (2015)CrossRefGoogle Scholar
  121. 121.
    Zhou, J, Lubineau, G, “Improving Electrical Conductivity in Polycarbonate Nanocomposites Using Highly Conductive PEDOT/PSS Coated MWCNTs.” ACS Appl. Mater. Inter., 5 6189–6200 (2013)CrossRefGoogle Scholar
  122. 122.
    Kyrylyuk, A, Hermant, M, Schilling, T, Klumperman, B, Koning, C, van der Schoot, P, “Controlling Electrical Percolation in Multicomponent Carbon Nanotube Dispersions.” Nat. Nanotechnol., 6 364–369 (2011)CrossRefGoogle Scholar
  123. 123.
    Hong, KP, Kim, SH, Yang, CW, Yun, WM, Nam, SJ, Jang, JY, “Photopatternable Poly(4-styrene sulfonicacid)-Wrapped MWNT Thin-Film Source/Drain Electrodes for Use in Organic Field-Effect Transistors.” ACS Appl. Mater. Inter., 3 74–79 (2011)CrossRefGoogle Scholar
  124. 124.
    Hermant, MC, Schoot, P, Klumperman, B, Koning, CE, “Probing the Cooperative Nature of the Conductive Components in Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)-Single-Walled Carbon Nanotube Composites.” ACS Nano, 4 2242–2248 (2010)CrossRefGoogle Scholar
  125. 125.
    Kim, DSRY, Kim, YS, Choi, KW, Grunlan, JC, Yu, CH, “Improved Thermoelectric Behavior of Nanotube-filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate).” ACS Nano, 4 513–523 (2010)CrossRefGoogle Scholar
  126. 126.
    Hermant, M, Klumperman, B, Kyrylyuk, A, van der Schoot, P, Koning, C, “Lowering the Percolation Threshold of Single-Walled Carbon Nanotubes Using Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Blends.” Soft Matter, 5 878–885 (2009)CrossRefGoogle Scholar
  127. 127.
    Amoli, HS, Shokatian, S, Abdous, M, “Thermal Annealing Combination with Pulse Nd-YAG Laser Treatment of ITO on Polycarbonate Using Spin Coating Process.” J. Sol-Gel Sci. Technol., 62 319–323 (2012)CrossRefGoogle Scholar
  128. 128.
    Yong, TK, Tou, TY, Teo, BS, “Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate.” Appl. Surf. Sci., 214 388–391 (2005)CrossRefGoogle Scholar
  129. 129.
    Kim, DI, KIM, SJ, “AFM Observation of ITO Thin Films Deposited on Polycarbonate Substrates by Sputter Type Negative Metal Ion Source.” Surf. Coat. Technol., 176 23–29 (2003)CrossRefGoogle Scholar
  130. 130.
    Kim, JS, Bae, JW, Kim, HJ, Lee, N-E, Yeom, GY, Oh, KH, “Effects of Oxygen Radical on the Properties of Indium Tin Oxide Thin Films Deposited at Room Temperature by Oxygen Ion Beam Assisted Evaporation.” Thin Solid Films, 377–378 103–108 (2000)CrossRefGoogle Scholar
  131. 131.
    Wu, WF, Chiou, BS, “Deposition of Indium Tin Oxide Films on Polycarbonate Substrates by Radio-Frequency Magnetron Sputtering.” Thin Solid Films, 298 221–227 (1997)CrossRefGoogle Scholar
  132. 132.
    Wu, WF, Chiou, BS, “Mechanical Properties of r.f. Magnetron Sputtered Indium Tin Oxide Films.” Thin Solid Films, 298 244–250 (1997)CrossRefGoogle Scholar
  133. 133.
    Kulkarni, AK, Schulz, KH, Lim, TS, Khan, M, “Electrical, Optical and Structural Characteristics of Indium-Tin-Oxide Thin Films Deposited on Glass and Polymer Substrates.” Thin Solid Films, 308–309 1–7 (1997)CrossRefGoogle Scholar
  134. 134.
    Minami, T, Sonohara, H, Kakumu, T, Takata, S, “Physics of Very Thin ITO Conducting Films with High Transparency Prepared by DC Magnetron Sputtering.” Thin Solid Films, 270 37–42 (1995)CrossRefGoogle Scholar
  135. 135.
    Asakuma, N, Fukui, T, Toki, M, “Low-Temperature Synthesis of ITO Thin Films Using an Ultraviolet Laser for Conductive Coating on Organic Polymer Substrates.” J. Sol-Gel Sci. Technol., 27 91–95 (2003)CrossRefGoogle Scholar
  136. 136.
    Aegerter, MA, Al-Dahoudi, N, “Wet-Chemical Processing of Transparent and Antiglare Conducting ITO Coating on Plastic Substrates.” J. Sol-Gel Sci. Technol., 27 81–89 (2003)CrossRefGoogle Scholar
  137. 137.
    Al-Dahoudi, N, Aegerter, MA, “Wet Coating Deposition of ITO Coatings on Plastic Substrates.” J. Sol-Gel Sci. Technol., 26 693–697 (2003)CrossRefGoogle Scholar
  138. 138.
    Al-Dahoudi, N, Bisht, H, Göbbert, C, Krajewski, T, Aegerter, MA, “Transparent Conducting, Anti-Static and Anti-Static-Anti-Glare Coatings on Plastic Substrates.” Thin Solid Films, 392 299–304 (2001)CrossRefGoogle Scholar
  139. 139.
    Burgard, D, Goebbert, C, Nass, R, “Synthesis of Nanocrystalline, Redispersable Antimony-Doped SnO2 Particles for the Preparation of Conductive, Transparent Coatings.” J. Sol-Gel Sci. Technol., 13 789–792 (1998)CrossRefGoogle Scholar
  140. 140.
    Sangermano, M, Foix, D, Kortaberria, G, Messori, M, “Multifunctional Antistatic and Scratch Resistant UV-Cured Acrylic Coatings.” Prog. Org. Coat., 76 1191–1196 (2013)CrossRefGoogle Scholar
  141. 141.
    Wouters, MEL, Wolfs, DP, van der Linde, MC, Hovens, JHP, Tinnemans, AHA, “Transparent UV Curable Antistatic Hybrid Coatings on Polycarbonate Prepared by the Sol-Gel Method.” Prog. Org. Coat., 51 312–320 (2004)CrossRefGoogle Scholar
  142. 142.
    Kim, HK, Kim, YB, Cho, JD, Hong, JW, “Synthesis and Characterization of Radiation-Curable Monomers for Antistatic Coatings.” Prog. Org. Coat., 48 34–42 (2003)CrossRefGoogle Scholar
  143. 143.
    Haas, KH, Amberg-Schwab, S, Rose, K, “Functionalized Coating Materials Based on Inorganic-Organic Polymers.” Thin Solid Films, 351 198–203 (1999)CrossRefGoogle Scholar
  144. 144.
    Jonas, F, Schrader, L, “Conductive Modifications of Polymers with Polypyrroles and Polythiophenes.” Synth. Met., 41 831–836 (1991)CrossRefGoogle Scholar
  145. 145.
    Gardner, SV, Jeanne, L, Klein, S, Brady, BK, “Electrically Conductive Composition and Elements Containing Solubilized Polyaniline Complex and Solvent Mixture.” US Patent 5,716,550 (1998)Google Scholar
  146. 146.
    Jonas, F, Heywang, G, Schmidtberg, W, Heinze, J, Dietrich, M, “Method of Imparting Antistatic Properties to a Substrate by Coating the Substrate with a Novel Polythiophene.” UV Patent 5,035,926 (1991)Google Scholar
  147. 147.
    Yoshizumi, M, “Antistatic Transparent Coating Composition.” US Patent 4,431,764 (1984)Google Scholar
  148. 148.
    Glaubitt, W, Löbmann, P, “Antireflective Coatings Prepared by Sol-Gel Processing: Principles and Applications.” J. Eur. Ceram. Soc., 32 2995–2999 (2012)CrossRefGoogle Scholar
  149. 149.
    Raut, HK, Ganesh, VA, Nair, AS, Ramakrishna, S, “Anti-Reflective Coatings: A Critical, In-depth Review.” Energy Environ. Sci., 4 3779–3804 (2011)CrossRefGoogle Scholar
  150. 150.
    Schubert, MF, Mont, FW, Chhajed, S, Poxson, DJ, Kim, JK, Schubert, EF, “Design of Multilayer Antireflection Coatings Made from Co-Sputtered and Low-Refractive-Index Materials by Genetic Algorithm.” Opt. Express, 16 5290–5298 (2008)CrossRefGoogle Scholar
  151. 151.
    Schulz, U, “Review of Modern Techniques to Generate Antireflective Properties on Thermoplastic Polymers.” Appl. Optics, 45 1608–1618 (2006)CrossRefGoogle Scholar
  152. 152.
    Dobrowolski, JA, Poitras, D, Ma, P, Vakil, H, Acree, M, “Toward Perfect Antireflection Coatings: Numerical Investigation.” Appl. Optics, 41 3075–3083 (2002)CrossRefGoogle Scholar
  153. 153.
    Chen, D, “Anti-Reflection (AR) Coatings Made by Sol-Gel Processes: A Review.” Sol. Energy Mater. Sol. Cells, 68 313–336 (2001)CrossRefGoogle Scholar
  154. 154.
    Jewhurst, S, Kalyankar, N, “Magnesium Fluoride and Magnesium Oxyfluoride Based Anti-reflection Coating via Chemical Solution Deposition Processes.” US Patent 2014/0147594 A1 (2014)Google Scholar
  155. 155.
    Tanaka, H, Kobayashi, M, Sakakibara, T, “Method of Producing Magnesium Fluoride Coating, Antireflection Coating, and Optical Element.” US Patent 8,399,069 B2 (2013)Google Scholar
  156. 156.
    Hattori, H, “Anti-Reflection Surface with Particle Coating Deposited by Electrostatic Attraction.” Adv. Mater., 13 51–54 (2001)CrossRefGoogle Scholar
  157. 157.
    Walheim, S, Schäffer, E, Mylnek, J, Steiner, U, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings.” Science, 283 520–522 (1999)CrossRefGoogle Scholar
  158. 158.
    Uhlmann, DR, Suratwala, T, Davidson, K, Boulton, JM, Teowee, G, “Sol-Gel Derived Coatings on Glass.” J. Non-Cryst. Solids, 218 113–122 (1997)CrossRefGoogle Scholar
  159. 159.
    Minot, MJ, “Single-Layer, Gradient Refractive Index Antireflection Films Effective from 0.35 to 2.5 Microns.” J. Opt. Soc. Am., 66 515–519 (1976)CrossRefGoogle Scholar
  160. 160.
    Moghal, J, Kobler, J, Sauer, J, Best, J, Gardener, M, Watt, ARR, Wakefield, G, “High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles.” ACS Appl. Mater. Interfaces, 4 854–859 (2012)CrossRefGoogle Scholar
  161. 161.
    Vincent, A, Babu, S, Brinley, E, Karakoti, A, Deshpande, S, Seal, S, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique.” J. Phys. Chem. C, 111 8291–8298 (2007)CrossRefGoogle Scholar
  162. 162.
    Bautista, MC, Morales, A, “Silica Antireflective Films on Glass Produced by the Sol-Gel Method.” Sol. Energy Mater. Sol. Cells, 80 217–225 (2003)CrossRefGoogle Scholar
  163. 163.
    Menna, P, Francia, GD, Ferrara, VL, “Porous Silicon in Solar Cells: A Review and a Description of Its Application as an AR Coating.” Sol. Energy Mater. Sol. Cells, 37 13–24 (1995)CrossRefGoogle Scholar
  164. 164.
    Thomas, IM, “Method for the Preparation of Porous Silica Antireflection Coatings Varying in Refractive Index from 1.22 to 1.44.” Appl. Opt., 31 (28) 6145–6149 (1992)CrossRefGoogle Scholar
  165. 165.
    Galeotti, F, Trespidi, F, Timò, G, Pasini, M, “Broadband and Crack-Free Antireflection Coatings by Self-Assembled Moth Eye Patterns.” ACS Appl. Mater. Interfaces, 6 5827–5834 (2014)CrossRefGoogle Scholar
  166. 166.
    Oh, SS, Choi, CG, Kim, YS, “Fabrication of Micro-lens Arrays with Moth-Eye Antireflective Nanostructures Using Thermal Imprinting Process.” Microelectron. Eng., 87 2328–2331 (2010)CrossRefGoogle Scholar
  167. 167.
    Chen, Q, Hubbard, G, Shields, PA, Liu, C, Allsopp, DWE, Wang, WN, Abbot, S, “Broadband Moth-Eye Antireflection Coatings Fabricated by Low-cost Nanoimprinting.” Appl. Phys. Lett., 94 263118-1–263118-3 (2009)Google Scholar
  168. 168.
    Sun, CH, Jiang, P, Jiang, B, “Broadband Moth-Eye Antireflection Coatings on Silicon.” Appl. Phys. Lett., 92 (061112) 1–3 (2008)Google Scholar
  169. 169.
    Clapham, PB, Hutley, MC, “Reduction of Lens Reflection by the “Moth Eye” Principle.” Nature, 244 281–282 (1973)CrossRefGoogle Scholar
  170. 170.
    Mazur, M, Wojcieszak, D, Kaczmarek, D, Domaradzki, J, Song, S, Gibson, D, Placido, F, Mazur, P, Kalisz, M, Poniedzialek, A, “Functional Photocatalytically Active and Scratch Resistant Antireflective Coating Based on TiO2 and SiO2.” Appl. Surf. Sci., 380 165–171 (2016)CrossRefGoogle Scholar
  171. 171.
    Li, D, Wan, D, Zhu, X, Wang, Y, Han, Z, Han, S, Shan, Y, Huang, F, “Broadband Antireflection TiO2–SiO2 Stack Coatings with Refractive-Index-Grade Structure and Their Applications to Cu(In, Ga)Se2 Solar Cells.” Sol. Energy Mater. Sol. Cells, 130 505–512 (2014)CrossRefGoogle Scholar
  172. 172.
    Mazur, M, Wojcieszak, D, Domarazki, J, Kaczmarek, D, Song, S, Placido, F, “TiO2/SiO2 Multilayer as an Antireflective and Protective Coating Deposited by Microwave Assisted Magnetron Sputtering.” Opto-Electron. Rev., 21 233–238 (2013)CrossRefGoogle Scholar
  173. 173.
    Hinczewski, DS, Hinczewski, M, Tepehan, FZ, Tepehan, GG, “Optical Filters from SiO2 and TiO2 Multi-layers Using Sol–Gel Spin Coating Method.” Sol. Energy Mater. Sol. Cells, 87 181–196 (2005)CrossRefGoogle Scholar
  174. 174.
    Jeong, SH, Kim, JK, Kim, BS, Shim, SH, Lee, BT, “Characterization of SiO2 and TiO2 Films Prepared Using rf Magnetron Sputtering and Their Application to Anti-Reflection Coating.” Vacuum, 76 507–515 (2004)CrossRefGoogle Scholar
  175. 175.
    Martinet, C, Paillard, V, Gagnaire, A, Joseph, J, “Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition for Antireflection Coating.” J. Non-Cryst. Solids, 216 77–82 (1997)CrossRefGoogle Scholar
  176. 176.
    Chen, D, Yan, Y, Westernberg, E, Niebauer, D, Sakaitani, N, Chaudhuri, SR, Sato, Y, Takamatsu, M, “Development of Anti-Reflection (AR) Coating on Plastic Panels for Display Applications.” J. Sol-Gel Sci. Technol., 19 77–82 (2000)CrossRefGoogle Scholar
  177. 177.
    Chunder, A, Etcheverry, K, Wadsworth, S, Boreman, GD, Zhai, L, “Fabrication of Anti-Reflection Coatings on Plastics Using the Spraying Layer-by-Layer Self-Assembly Technique.” J. Soc. Inf. Display, 17 389–395 (2009)CrossRefGoogle Scholar
  178. 178.
    Hiller, J, Mendelsohn, JD, Rubner, MF, “Reversibly Erasable Nanoporous Anti-reflection Coatings from Polyelectrolyte Multilayers.” Nat. Mater., 1 59–63 (2002)CrossRefGoogle Scholar
  179. 179.
    Yang, S, Rubner, MF, “Micropatterning of Polymer Thin Films with pH-Sensitive and Cross-linkable Hydrogen-Bonded Polyelectrolyte Multilayers.” J. Am. Chem. Soc., 124 2100–2101 (2002)CrossRefGoogle Scholar
  180. 180.
    Yam, CM, Kakkar, AK, “Molecular Self-Assembly of Dihydroxy-Terminated Molecules via Acid-Base Hydrolytic Chemistry on Silica Surfaces: Step-by-Step Multilayered Film Construction.” Langmuir, 15 3807–3815 (1999)CrossRefGoogle Scholar
  181. 181.
    Weng, KW, Huang, YP, “Preparation of TiO2 Thin Films on Glass Surfaces with Self-Cleaning Characteristics for Solar Concentrators.” Surf. Coat. Technol., 231 201–204 (2013)CrossRefGoogle Scholar
  182. 182.
    Lai, Y, Tang, Y, Gong, J, Gong, D, Chi, L, Lin, C, Chen, Z, “Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-Fogging.” J. Mater. Chem., 22 7420–7426 (2012)CrossRefGoogle Scholar
  183. 183.
    Xi, B, Verma, LK, Li, J, Bhatia, CS, Danner, AJ, Yang, HS, Zeng, HC, “TiO2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications.” ACS Appl. Mater. Inter., 4 1093–1102 (2012)CrossRefGoogle Scholar
  184. 184.
    Euvananont, C, Junin, C, Inpor, K, Limthongkul, P, Thanachayanont, C, “TiO2 Optical Coating Layers for Self-Cleaning Applications.” Ceram. Int., 34 1067–1071 (2008)CrossRefGoogle Scholar
  185. 185.
    Latthe, S, Liu, S, Terashima, C, Nakata, K, Fujishima, A, “Transparent, Adherent, and Photocatalytic SiO2-TiO2 Coatings on Polycarbonate for Self-Cleaning Applications.” Coatings, 4 497–507 (2014)CrossRefGoogle Scholar
  186. 186.
    Fateh, R, Dillert, R, Bahnemann, D, “Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate.” Langmuir, 29 3730–3739 (2013)CrossRefGoogle Scholar
  187. 187.
    Kesmez, Ö, Erdem Çamurlu, H, Burunkaya, E, Arpaç, E, “Sol-Gel Preparation and Characterization of Anti-Reflective and Self-Cleaning SiO2-TiO2 Double-Layer Nanometric Films.” Sol. Energy Mater. Sol. Cells, 93 1833–1839 (2009)CrossRefGoogle Scholar
  188. 188.
    Liu, Z, Zhang, X, Murakami, T, Fujishima, A, “Sol-Gel TiO2/SiO2 Bilayer Films with Self-Cleaning and Antireflection Properties.” Sol. Energy Mater. Sol. Cells, 92 1434–1438 (2008)CrossRefGoogle Scholar
  189. 189.
    Guan, K, “Relationship between Photocatalytic Activity, Hydrophilicity and Self-Cleaning Effect of TiO2/SiO2 Films.” Surf. Coat. Technol., 191 155–160 (2005)CrossRefGoogle Scholar
  190. 190.
    Li, H, Jiang, M, Hu, D, Yan, Y, Li, Q, Dong, L, Xiong, C, “Solvent-Free Zirconia Nanofluid/Silica Single-Layer Multifunctional Hybrid Coatings.” Colloid. Surface. A, 464 26–32 (2015)CrossRefGoogle Scholar
  191. 191.
    Prado, R, Beobide, G, Marcaide, A, Goikoetxea, J, Aranzabe, A, “Development of Multifunctional Sol-Gel Coatings: Anti-Reflection Coatings with Enhanced Self-Cleaning Capacity.” Sol. Energy Mater. Sol. Cells, 94 1081–1088 (2010)CrossRefGoogle Scholar
  192. 192.
    Zhao, X, Zhao, Q, Yu, J, Liu, B, “Development of Multifunctional Photoactive Self-Cleaning Glasses.” J. Non-Cryst. Solids, 354 1424–1430 (2008)CrossRefGoogle Scholar
  193. 193.
    Okada, M, Yamada, Y, Jin, P, Tazawa, M, Yoshimura, K, “Fabrication of Multifunctional Coating Which Combines Low-E Property and Visible-Light-Responsive Photocatalytic Activity.” Thin Solid Films, 442 217–221 (2003)CrossRefGoogle Scholar
  194. 194.
    Kuhr, M, Bauer, S, Rothhaar, U, Wolff, D, “Coatings on Plastics with the PICVD Technology.” Thin Solid Films, 442 107–116 (2003)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2016

Authors and Affiliations

  1. 1.Smart Materials R&D CenterKorea Automotive Technology InstituteCheonanSouth Korea

Personalised recommendations