Kinetic Modeling of Amino Acid Production from Ice-Cream Wastewater in Subcritical Conditions

Abstract

Wastewater derived from ice-cream manufacture contains high concentration of protein, making it a suitable feedstock for hydrolysis. In this study, ice-cream wastewater was hydrolyzed under subcritical conditions (170–230 °C and 40 bars) and different nominal pH (3, 6, and 9) to produce amino acids. The formation and subsequent degradation of amino acids were modeled using a two-consecutive reaction model. Apparent activation energy for the formation and degradation of amino acids varied from 41 to 83 and 33 to 59 kJ/mol, respectively, changing with the nominal pH. The amino acid profile showed 21 amino acids, whose concentration was strongly influenced by the reaction conditions. The maximum concentration of amino acids was found within the first 50 min at 170 °C and nominal pH 3. After 50 min, a mixture of amino acids was obtained mainly made of glutamic acid (20–30%), proline (9–12%), aspartic (3–10%), and leucine (9–12%), showing slight variation with the nominal pH. Subcritical hydrolysis of ice-cream wastewater showed to be an effective alternative to produce amino acids that can be used as platform chemicals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdelmoez, W., Nakahasi, T., & Yoshida, H. (2007). Amino acid transformation and decomposition in saturated subcritical water conditions. Industrial & Engineering Chemistry Research, 46(16), 5286–5294.

    CAS  Article  Google Scholar 

  2. Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U. U., Soares, B. C. V., Souza, S. L. Q., Pimentel, T. C., Scudine, H., Guimaraes, J. T., Esmerino, E. A., Freitas, M. Q., Almada, R. B., Vendramel, M. R., Silva, M. C., & Cruz, A. G. (2019). Treatment and utilization of dairy industrial waste: a review. Trends in Food Science & Technology, 88, 361–372.

    CAS  Article  Google Scholar 

  3. Amamcharla, J. K., & Metzger, L. E. (2011). Development of a rapid method for the measurement of lactose in milk using a blood glucose biosensor. Journal of Dairy Science, 94(10), 4800–4809.

    CAS  Article  Google Scholar 

  4. AOAC International (2000). International Official Methods of Analysis (17th ed. ed.). Gaithersburg, MD.

  5. Borja, R., & Banks, C. J. (1994). Kinetics of an upflow anaerobic sludge blanket reactor treating ice-cream wastewater. Environmental Technology, 15(3), 219–232.

    CAS  Article  Google Scholar 

  6. Cheng, H., Zhu, X., Zhu, C., Qian, J., Zhu, N., Zhao, L., & Chen, J. (2008). Hydrolysis technology of biomass waste to produce amino acids in sub-critical water. Bioresource Technology, 99(9), 3337–3341.

    CAS  Article  Google Scholar 

  7. Demirel, B., Yenigun, O., & Onay, T. T. (2005). Anaerobic treatment of dairy wastewaters: a review. Process Biochemistry, 40(8), 2583–2595.

    CAS  Article  Google Scholar 

  8. Enteshari, M., & Martínez-Monteagudo, S. I. (2018). Subcritical hydrolysis of ice-cream wastewater: modeling and functional properties of hydrolysate. Food and Bioproducts Processing, 111, 104–113.

    CAS  Article  Google Scholar 

  9. Enteshari, M., & Martínez-Monteagudo, S. I. (2020a). Hydrothermal conversion of ice-cream wastewater. Journal of Food Process Engineering, 43, e13498.

    CAS  Article  Google Scholar 

  10. Enteshari, M., & Martínez-Monteagudo, S. I. (2020b). One-pot synthesis of lactose derivatives from whey permeate. Foods, 9(6), 784.

    CAS  Article  Google Scholar 

  11. Espinoza, A. D., Morawicki, R. O., & Hager, T. (2012). Hydrolysis of whey protein isolate using subcritical water. Journal of Food Science, 77(1), C20–C26.

    CAS  Article  Google Scholar 

  12. Esteban, M. B., García, A. J., Ramos, P., & Márquez, M. C. (2008). Kinetics of amino acid production from hog hair by hydrolysis in sub-critical water. The Journal of Supercritical Fluids, 46(2), 137–141.

    CAS  Article  Google Scholar 

  13. Esteban, M. B., García, A. J., Ramos, P., & Márquez, M. C. (2010). Sub-critical water hydrolysis of hog hair for amino acid production. Bioresource Technology, 101(7), 2472–2476.

    CAS  Article  Google Scholar 

  14. Hawkes, F. R., Donnelly, T., & Anderson, G. K. (1995). Comparative performance of anaerobic digesters operating on ice-cream wastewater. Water Research, 29(2), 525–533.

    CAS  Article  Google Scholar 

  15. Kang, K., Quitain, A. T., Daimon, H., Noda, R., Goto, N., Hu, H.-Y., & Fujie, K. (2001). Optimization of amino acids production from waste fish entrails by hydrolysis in sub and supercritical water. The Canadian Journal of Chemical Engineering, 79(1), 65–70.

    CAS  Article  Google Scholar 

  16. Korhonen, H. (2009). Milk-derived bioactive peptides: from science to applications. Journal of Functional Foods, 1(2), 177–187.

    CAS  Article  Google Scholar 

  17. Kushwaha, J. P., Srivastava, V. C., & Mall, I. D. (2011). An overview of various technologies for the treatment of dairy wastewaters. Critical Reviews in Food Science and Nutrition, 51(5), 442–452.

    CAS  Article  Google Scholar 

  18. Lima, J. C., Seixas, F. A. V., Coimbra, J. S. R., Pimentel, T. C., Barão, C. E., & Cardozo-Filho, L. (2019). Continuous fractionation of whey protein isolates by using supercritical carbon dioxide. Journal of CO2 Utilization, 30, 112–122.

    CAS  Article  Google Scholar 

  19. Martinez-Monteagudo, S. I., & Salais-Fierro, F. (2014). Moisture sorption isotherms and thermodynamic properties of Mexican Mennonite-style cheese. Journal of Food Science and Technology, 51(10), 2393–2403.

    CAS  Article  Google Scholar 

  20. Möller, M., Nilges, P., Harnisch, F., & Schröder, U. (2011). Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem, 4(5), 566–579.

    Article  Google Scholar 

  21. Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66(5), 642–646.

    CAS  Article  Google Scholar 

  22. Quitain, A. T., Sato, N., Daimon, H., & Fujie, K. (2001). Production of valuable materials by hydrothermal treatment of shrimp shells. Industrial & Engineering Chemistry Research, 40(25), 5885–5888.

    CAS  Article  Google Scholar 

  23. Rogalinski, T., Herrmann, S., & Brunner, G. (2005). Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. The Journal of Supercritical Fluids, 36(1), 49–58.

    CAS  Article  Google Scholar 

  24. van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1), 139–159.

    Article  Google Scholar 

  25. Yoshida, H., Takahashi, Y., & Terashima, M. (2003). A simplified reaction model for production of oil, amino acids, and organic acids from fish meat by hydrolysis under sub-critical and supercritical conditions. Journal of Chemical Engineering of Japan, 36(4), 441–448.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio I. Martinez-Monteagudo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enteshari, M., Martinez-Monteagudo, S.I. Kinetic Modeling of Amino Acid Production from Ice-Cream Wastewater in Subcritical Conditions. Food Bioprocess Technol 14, 717–725 (2021). https://doi.org/10.1007/s11947-021-02605-2

Download citation

Keywords

  • Subcritical hydrolysis
  • Ice-cream wastewater
  • Kinetic modeling
  • Activation energy
  • Amino acids