Comparative Studies of Screen-Printed Electrode Based Electrochemical Biosensor with the Optical Biosensor for Formaldehyde Detection in Corn

Abstract

In the present manuscript, we fabricated screen-printed electrode based biosensor and enzymatic optical biosensor for detection of carcinogenic formaldehyde. The biosensor strip using cyclic voltammetry technique exhibited high sensitivity of 352 μA mg−1 L cm−2 with detection limit of 0.03 mg/L, and sensitivity of 0.186 Abs (mg/L)−1 with detection limit of 0.02 mg/L was obtained with optical biosensor over the concentration range of 0.01–0.5 mg/L. This electrochemical sensing result was compared with that of enzymatic optical sensing obtained with α-Fe2O3/ITO bioelectrode on the same sample, under similar environmental conditions, obtaining a high correlation (r2 = 0.988). The non-availability of biosensor for formaldehyde detection in corn as a food and feed stimulated our research efforts in this direction. The results of the study may have implications in developing a range of biosensors for the quantification of adulterants and contaminants along the whole food supply chain from farm to fork.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmed, K. M. F., Hafez, R. S., Morgan, S. D., & Awad, A. A. (2015). Detection of some chemical hazards in milk and some dairy products. African Journal of Food Science, 9(4), 187–193.

    Article  Google Scholar 

  2. Alexandre, D. L., Melo, A. M. A., Furtado, R. F., Borges, M. F., Figueiredo, E. A. T., Biswas, A., Cheng, H. N., & Alves, C. R. (2018). A rapid and specific biosensor for Salmonella typhimurium detection in milk. Food and Bioprocess Technology, 11(4), 748–756.

    CAS  Article  Google Scholar 

  3. Ali, M. A., Solanki, P. R., Patel, M. K., Dhayani, H., Agrawal, V. V., John, R., & Malhotra, B. D. (2013). A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. Nanoscale, 5(7), 2883–2891.

    CAS  Article  Google Scholar 

  4. Al-Khatib, M. T., Shequarah, M. N., & Alsmadi, S. A. (2017). Control of soil-borne pathogens by soil fumigation with paraformaldehyde (fogidesfarm) as alternative to methyl bromide. Asian Journal of Plant Pathology, 11(2), 81–88.

    Article  Google Scholar 

  5. Arora, K., Sumana, G., Saxena, V., Gupta, R. K., Gupta, S. K., Yakhmi, J. V., Pandey, M. K., Chand, S., & Malhotra, B. D. (2007). Improved performance of polyaniline-uricase biosensor. Analytica Chimica Acta, 594(1), 17–23.

    CAS  Article  Google Scholar 

  6. Assadpour, E., Maghsoudlou, Y., Jafari, S.-M., Ghorbani, M., & Aalami, M. (2016). Evaluation of folic acid nano-encapsulation by double emulsions. Food and Bioprocess Technology, 9(12), 2024–2032. https://doi.org/10.1007/s11947-016-1786-y.

    CAS  Article  Google Scholar 

  7. Azizi, S. N., Ghasemi, S., & Amiripour, F. (2016). Nickel/P nanozeolite modified electrode: a new sensor for the detection of formaldehyde. Sensors and Actuators B: Chemical, 227, 1–10.

    CAS  Article  Google Scholar 

  8. Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Padmanabhan, S. C., Cummins, E., & Kerry, J. P. (2016). The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food and Bioprocess Technology, 9(10), 1661–1673. https://doi.org/10.1007/s11947-016-1745-7.

    CAS  Article  Google Scholar 

  9. Bhardwaj, H., Singh, C., Pandey, M. K., & Sumana, G. (2016). Star shaped zinc sulphide quantum dots self-assembled monolayers: preparation and applications in food toxin detection. Sensors and Actuators B: Chemistry, 231, 624–633.

    CAS  Article  Google Scholar 

  10. Bingham, A. K., Phillips, T. D., & Bauer, J. E. (2003). Potential for dietary protection against the effects of aflatoxins in animals. Journal of the American Veterinary Medical Association, 222(5), 591–596.

    CAS  Article  Google Scholar 

  11. Brahim, M. B., Ammar, H. B., Abdelhedi, R., & Samet, Y. (2016). Electrochemical behavior and analytical detection of imidacloprid insecticide on a BDD electrode using square-wave voltammetric method. Chinese Chemical Letters, 27(5), 666–672.

    Article  Google Scholar 

  12. Brown, A. P., & Anson, F. C. (1977). Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Analytical Chemistry, 49(11), 1589–1595.

    CAS  Article  Google Scholar 

  13. Cahuantzi-Muñoz, S. L., González-Fuentes, M. A., Ortiz-Frade, L. A., Torres, E., Ţălu, Ş., Trejo, G., & Méndez-Albores, A. (2019). Electrochemical biosensor for sensitive quantification of glyphosate in maize kernels. Electroanalysis, 31(5), 927–935.

    Article  Google Scholar 

  14. Chou, C. H., Chang, J. L., & Zen, J. M. (2009). Homogeneous platinum‐deposited screen‐printed edge band ultramicroelectrodes for amperometric sensing of carbon monoxide. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(2), 206–209.

  15. Ding, D., Yan, X., Zhang, X., He, Q., Qiu, B., Jiang, D., Wei, H., Guo, J., Umar, A., & Sun, L. (2015). Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites. Superlattices and Microstructures, 85, 305–320.

    CAS  Article  Google Scholar 

  16. European Commission. (2006). Directive 2006/52/EC of the European Parliament and of the Council amending Directive 95/2/EC on food additives other than colours and sweeteners and Directive 94/35/EC on sweeteners for use in foodstuffs. Official Journal of the European Union, vol, 204, 10–22.

    Google Scholar 

  17. European Food Safety Authority. (2007). Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to use of formaldehyde as a preservative during the manufacture and preparation of food additives. European Food Safety Authority Journal, 415, 1–10.

    Google Scholar 

  18. Fabra, M. J., Flores-Lopez, M. L., Cerqueira, M. A., de Rodriguez, D. J., Lagaron, J. M., & Vicente, A. A. (2016). Layer-by-layer technique to developing functional nanolaminate films with antifungal activity. Food and Bioprocess Technology, 9(3), 471–480. https://doi.org/10.1007/s11947-015-1646-1.

    CAS  Article  Google Scholar 

  19. Fu, G.-M., Chen, Y., Li, R.-Y., Yuan, X.-Q., Liu, C.-M., Li, B., & Wan, Y. (2017). Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Preparative Biochemistry and Biotechnology, 47(8), 782–788.

    CAS  Article  Google Scholar 

  20. Gumpu, M. B., Nesakumar, N., Sethuraman, S., Krishnan, U. M., & Rayappan, J. B. B. (2016). Determination of putrescine in tiger prawn using an amperometric biosensor based on immobilization of diamine oxidase onto ceria nanospheres. Food and Bioprocess Technology, 9(4), 717–724.

    CAS  Article  Google Scholar 

  21. Hajilari, F., Farhadi, K., Eskandari, H., & Allahnouri, F. (2020). Application of Cu/porous silicon nanocomposite screen printed sensor for the determination of formaldehyde. Electrochimica Acta, 355, 136751.

    CAS  Article  Google Scholar 

  22. International Agency for Research on Cancer. (2004). Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. In Monographs on the evaluation of carcinogenic risks to humans (Vol. 88). Geneva: World Health Organization.

    Google Scholar 

  23. Jeong, H.-S., Chung, H., Song, S.-H., Kim, C.-I., Lee, J.-G., & Kim, Y.-S. (2015). Validation and determination of the contents of acetaldehyde and formaldehyde in foods. Toxicology Research, 31(3), 273–278.

    CAS  Article  Google Scholar 

  24. Kundu, M., Prasad, S., Krishnan, P., & Gajjala, S. (2019). A novel electrochemical biosensor based on hematite (α-Fe2O3) flower like nanostructures for sensitive determination of formaldehyde adulteration in fruit juices. Food and Bioprocess Technology, 12(10), 1659–1671.

    CAS  Article  Google Scholar 

  25. Liteplo, R. G., Beauchamp, R., Chenier, R., & Meek, M. E. (2002). Concise international chemical assessment document 40: Formaldehyde, pp 1-74. Geneva: World Health Organization.

    Google Scholar 

  26. Malvano, F., Albanese, D., Pilloton, R., Di Matteo, M., & Crescitelli, A. (2017). A new label-free impedimetric affinity sensor based on cholinesterases for detection of organophosphorous and carbamic pesticides in food samples: impedimetric versus amperometric detection. Food and Bioprocess Technology, 10(10), 1834–1843.

    CAS  Article  Google Scholar 

  27. Marzuki, N. I., Bakar, F. A., Salleh, A. B., Heng, L. Y., Yusof, N. A., & Siddiquee, S. (2012). Development of electrochemical biosensor for formaldehyde determination based on immobilized enzyme. International Journal of Electrochemical Science, 7, 6070–6083.

    CAS  Google Scholar 

  28. Mphuthi, N. G., Adekunle, A. S., Fayemi, O. E., Olasunkanmi, L. O., & Ebenso, E. E. (2017). Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of dopamine. Scientific Reports, 7(1), 43181.

    Article  Google Scholar 

  29. Nachaki, E. O., Ndangili, P. M., Naumih, N. M., & Masika, E. (2018). Nickel-Palladium-based electrochemical sensor for quantitative detection of formaldehyde. Chemistry Select, 3, 384–392.

    CAS  Google Scholar 

  30. Nedellec, V., Rabl, A., & Dab, W. (2016). Public health and chronic low chlordecone exposure in Guadeloupe, Part 1: hazards, exposure-response functions, and exposures. Environmental Health, 15, 1–20.

    Article  Google Scholar 

  31. Noor Aini, B., Siddiquee, S., & Ampon, K. (2016). Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol). Biosensors, 6(3), 1–32.

    Article  Google Scholar 

  32. Sari, A. P., Rachim, A., & Nurlely, & Fauzia, V. (2017). Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection. AIP Conference Proceedings, 1862(1), 030049. https://doi.org/10.1063/1.4991153.

  33. Sigawi, S., Smutok, O., Demkiv, O., Gayda, G., Vus, B., Nitzan, Y., & Nisnevitch, M. (2014). Detection of waterborne and airborne formaldehyde: from amperometric chemosensing to a visual biosensor based on alcohol oxidase. Materials, 7(2), 1055–1068.

    Article  Google Scholar 

  34. Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., Mathur, R. B., & Malhotra, B. D. (2013). Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensor Actuators B: Chemistry, 185, 258–264.

    CAS  Article  Google Scholar 

  35. Solanki, P. R., Patel, M. K., Ali, M. A., & Malhotra, B. D. (2015). A chitosan modified nickel oxide platform for biosensing applications. Journal of Materials Chemistry B, 3(32), 6698–6708.

    CAS  Article  Google Scholar 

  36. Songa, E. A., Somerset, V. S., Waryo, T., Baker, P. G. L., & Iwuoha, E. I. (2009). Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure and Applied Chemistry, 81(1), 123–139.

    CAS  Article  Google Scholar 

  37. Sundari, R., Hadibarata, T., Heng, L. Y., & Ahmad, M. (2012). A new biosensor based on nanogold doping in P-HEMA alcohol oxidase detects formaldehyde in fresh food. Trends in Applied Sciences Research, 7(9), 737.

    Article  Google Scholar 

  38. Thimmasandra, N. R., & Devarahosahally, V. K. (2014). Visual detection and determination of melamine using synthetic dyes. Journal of Applied Chemistry, 2014, 1–7. https://doi.org/10.1155/2014/457254.

    CAS  Article  Google Scholar 

  39. Udaiyan, K., Greep, S., Muthukumar, T., & Chitra, A. (1999). Effect of fumigation and pesticide drenches on VAM status and growth in cereals. Journal of Environmental Biology, 20, 167–176.

    CAS  Google Scholar 

  40. Wang, M., Jiang, S., Chen, Y., Chen, X., Zhao, L., Zhang, J., & Xu, J. (2012). Formaldehyde biosensor with formaldehyde dehydrogenase adsorped on carbon electrode modified with polypyrrole and carbon nanotube. Engineering, 4(10), 135–138.

    Article  Google Scholar 

  41. Weng, X., Chon, C. H., Jiang, H., & Li, D. (2009). Rapid detection of formaldehyde concentration in food on a polydimethylsiloxane (PDMS) microfluidic chip. Food Chemistry, 114(3), 1079–1082.

    CAS  Article  Google Scholar 

  42. Yanaga, A., Hozumi, N., Ohira, S.-I., Hasegawa, A., & Toda, K. (2016). Formaldehyde vapor produced from hexamethylenetetramine and pesticide: simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer. Talanta, 148, 649–654.

    CAS  Article  Google Scholar 

  43. Yi, Q., Niu, F., & Yu, W. (2011). Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films, 519(10), 3155–3161.

  44. Zailina, H., & Fatimah, A. B. (2013). Health risk assessment of adults consuming commercial fish contaminated with formaldehyde. Food and Public Health, 3(1), 52–58.

    Google Scholar 

  45. Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. Applied Microbiology and Biotechnology, 102(12), 5033–5043.

    CAS  Article  Google Scholar 

  46. Zhao, X., Zuo, J., Qiu, S., Hu, W., Wang, Y., & Zhang, J. (2017). Reduced graphene oxide-modified screen-printed carbon (rGO-SPCE)-based disposable electrochemical sensor for sensitive and selective determination of ethyl carbamate. Food Analytical Methods, 10(10), 3329–3337.

    Article  Google Scholar 

  47. Zhou, Z. L., Kang, T. F., Zhang, Y., & Cheng, S. Y. (2009). Electrochemical sensor for formaldehyde based on Pt–Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchimica Acta, 164(1), 133–138.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are highly grateful to Director, CSIR-National Physical Laboratory, New Delhi, India, for providing the research facilities, necessary for conducting the study.

Funding

This work was supported by the ICAR-Indian Agricultural Research Institute, New Delhi, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumana Gajjala.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kundu, M., Rajesh, Krishnan, P. et al. Comparative Studies of Screen-Printed Electrode Based Electrochemical Biosensor with the Optical Biosensor for Formaldehyde Detection in Corn. Food Bioprocess Technol 14, 726–738 (2021). https://doi.org/10.1007/s11947-021-02604-3

Download citation

Keywords

  • Screen-printed electrode
  • Corn
  • Formaldehyde
  • Electrochemical and optical biosensor