Effects of Apple Juice Manufacturing Processes on Procyanidin Concentration and Nondestructive Analysis by Fluorescence Fingerprint

Abstract

Procyanidins are one of the main polyphenols in apple fruit. In this study, we aimed to increase the amount of extractable procyanidins by micro-wet milling (MWM), a novel milling process that can wet-mill foods to micrometer scale, in addition to commonly applied apple juice manufacturing processes. The effects of milling, pasteurization, centrifugation, and enzymatic treatment on extractable procyanidin concentration were investigated, and MWM was shown to increase the procyanidin concentration by 16.7% compared with mixer milling. Conversely, other processes such as pasteurization, centrifugation, and enzymatic treatment decreased the procyanidin concentration in apple juice. Since procyanidin concentrations in apple juice are also affected by the variability between individual apples, we attempted to nondestructively estimate the procyanidin concentration at each process of apple juice manufacturing by obtaining the fluorescence fingerprint (FF). The FFs are a set of fluorescence spectra acquired at consecutive excitation wavelengths. Partial least-squares regression was used to estimate the procyanidin concentrations of apple juice from the FFs, and the most accurate model was able to estimate procyanidin concentration at the quality control analysis level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

MWM:

Micro-wet milling

FF:

Fluorescence fingerprint

EEM:

Excitation-emission matrix

CFU:

Colony-forming units

HPLC:

High-performance liquid chromatography

VIP:

Variable importance in projection

RPD:

Residual predictive deviation

RMSEP:

Root-mean-square error of prediction

References

  1. Becker, E. M., Christensen, J., Frederiksen, C. S., & Haugaard, V. K. (2003). Front-face fluorescence spectroscopy and chemometrics in analysis of yogurt: rapid analysis of riboflavin. Journal of Dairy Science, 86(8), 2508–2515.

    CAS  Article  Google Scholar 

  2. Castritius, S., Kron, A., Schäfer, T., Rädle, M., & Harms, D. (2010). Determination of alcohol and extract concentration in beer samples using a combined method of near-infrared (NIR) spectroscopy and refractometry. Journal of Agriculture and Food Chemistry, 58(24), 12634–12641. https://doi.org/10.1021/jf1030604.

    CAS  Article  Google Scholar 

  3. Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1), 103–112. https://doi.org/10.1016/j.chemolab.2004.12.011.

    CAS  Article  Google Scholar 

  4. De Paepe, D., Valkenborg, D., Coudijzer, K., Noten, B., Servaes, K., De Loose, M., Voorspoels, S., Diels, L., & Van Droogenbroeck, B. (2014). Thermal degradation of cloudy apple juice phenolic constituents. Food Chemistry, 162, 176–185.

    Article  Google Scholar 

  5. Di Egidio, V., Sinelli, N., Giovanelli, G., Moles, A., & Casiraghi, E. (2010). NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. European Food Research and Technology, 230(6), 947–955. https://doi.org/10.1007/s00217-010-1227-5.

    CAS  Article  Google Scholar 

  6. Fearn, T. (2002). Assessing Calibrations: SEP, RPD, RER and R2. NIR news, 13(6), 12–13. https://doi.org/10.1255/nirn.689.

    Article  Google Scholar 

  7. Guimet, F., Boque, R., & Ferre, J. (2006). Application of non-negative matrix factorization combined with Fisher's linear discriminant analysis for classification of olive oil excitation-emission fluorescence spectra. Chemometrics and Intelligent Laboratory Systems, 81(1), 94–106. https://doi.org/10.1016/j.chemolab.2005.10.003.

    CAS  Article  Google Scholar 

  8. Guyot, S., Le Bourvellec, C., Marnet, N., & Drilleau, J. F. (2002). Procyanidins are the most abundant polyphenols in dessert apples at maturity. LWT - Food Science and Technology, 35(3), 289–291. https://doi.org/10.1006/fstl.2001.0843.

    CAS  Article  Google Scholar 

  9. Hagen, S. F., Solhaug, K. A., Bengtsson, G. B., Borge, G. I. A., & Bilger, W. (2006). Chlorophyll fluorescence as a tool for non-destructive estimation of anthocyanins and total flavonoids in apples. Postharvest Biology and Technology, 41(2), 156–163. https://doi.org/10.1016/j.postharvbio.2006.04.003.

    CAS  Article  Google Scholar 

  10. Iino, S., & Watanabe, M. (1986). Clarification of wines by marketing pectinase (in Japanese). In Yamanashi Prefectural Industrial Technology Center Research Reports (Vol. 1).

    Google Scholar 

  11. Islam, M. Z., Kitamura, Y., Kokawa, M., Monalisa, K., Tsai, F.-H., & Miyamura, S. (2017). Effects of micro wet milling and vacuum spray drying on the physicochemical and antioxidant properties of orange (Citrus unshiu) juice with pulp powder. Food and Bioproducts Processing, 101, 132–144. https://doi.org/10.1016/j.fbp.2016.11.002.

    CAS  Article  Google Scholar 

  12. Iwate Agricultural Research Center. (2005). Method for producing apple juice with increased juice ratio using cellulase (in Japanese). Iwate: Iwate Agricultural Research Center.

    Google Scholar 

  13. Jiang, J. K., Wu, J., & Liu, X. H. (2010). Fluorescence properties of lake water. Spectroscopy and Spectral Analysis, 30(6), 1525–1529. https://doi.org/10.3964/j.issn.1000-0593(2010)06-1525-05.

    CAS  Article  PubMed  Google Scholar 

  14. Karoui, R., & Blecker, C. (2011). Fluorescence spectroscopy measurement for quality assessment of food systems–a review. Food and Bioprocess Technology, 4(3), 364–386. https://doi.org/10.1007/s11947-010-0370-0.

    Article  Google Scholar 

  15. Kokawa, M., Ikegami, S., Chiba, A., Koishihara, H., Trivittayasil, V., Tsuta, M., Fujita, K., & Sugiyama, J. (2015). Measuring cheese maturation with the fluorescence fingerprint. Food Science and Technology Research, 21(4), 549–555.

    CAS  Article  Google Scholar 

  16. Kokawa, M., Nishi, K., Ashida, H., Trivittayasil, V., Sugiyama, J., & Tsuta, M. (2017). Predicting the heating temperature of soymilk products using fluorescence fingerprints. Food and Bioprocess Technology, 10(3), 462–468. https://doi.org/10.1007/s11947-016-1835-6.

    CAS  Article  Google Scholar 

  17. Koyama, M., & Kitamura, Y. (2014). Development of a new rice beverage by improving the physical stability of rice slurry. Journal of Food Engineering, 131, 89–95. https://doi.org/10.1016/j.jfoodeng.2014.01.030.

    CAS  Article  Google Scholar 

  18. Kvalheim, O. M. (2010). Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots. Journal of Chemometrics, 24(7-8), 496–504. https://doi.org/10.1002/cem.1289.

    CAS  Article  Google Scholar 

  19. Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd Edition ed.). NewYork: Springer Science+Business Media, LLC..

    Google Scholar 

  20. Lenhardt, L., Bro, R., Zeković, I., Dramićanin, T., & Dramićanin, M. D. (2015). Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chemistry, 175, 284–291. https://doi.org/10.1016/j.foodchem.2014.11.162.

    CAS  Article  PubMed  Google Scholar 

  21. Li, F., Chen, G., & Fu, X. (2016). Comparison of effect of gear juicer and colloid mill on microstructure, polyphenols profile, and bioactivities of mulberry (Morus indica L.). Food and Bioprocess Technology, 9(7), 1233–1245. https://doi.org/10.1007/s11947-016-1715-0.

    CAS  Article  Google Scholar 

  22. Li, X., Kokawa, M., & Kitamura, Y. (2017). Formation of phosphatidic acid in Japanese mustard spinach (Komatsuna) during the milling process. Food Science and Technology Research, 23(4), 517–523. https://doi.org/10.3136/fstr.23.517.

    CAS  Article  Google Scholar 

  23. Li, X., Kokawa, M., & Kitamura, Y. (2018). Influence of micro wet milling parameters on the processing of Komatsuna (Brassica rapa var. perviridis) juice with rich phosphatidic acid. Journal of Food Engineering, 217(Supplement C), 50–57. https://doi.org/10.1016/j.jfoodeng.2017.08.021.

    CAS  Article  Google Scholar 

  24. Liu, F., & He, Y. (2009). Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar. Food Chemistry, 115(4), 1430–1436. https://doi.org/10.1016/j.foodchem.2009.01.073.

    CAS  Article  Google Scholar 

  25. Lorenzo, C., Garde-Cerdán, T., Pedroza, M. A., Alonso, G. L., & Salinas, M. R. (2009). Determination of fermentative volatile compounds in aged red wines by near infrared spectroscopy. Food Research International, 42(9), 1281–1286. https://doi.org/10.1016/j.foodres.2009.03.021.

    CAS  Article  Google Scholar 

  26. Morifuji, M., Tsuchiya, A., & Ohara, H. (2013). In L. Meiji Co (Ed.), Polyphenol stabilizer, and composition and processed goods containing said stabilizer (Vol. PCT/JP2013/057953). Japan.

    Google Scholar 

  27. Obara, M., Masumoto, S., Ono, Y., Ozaki, Y., & Shoji, T. (2016). Procyanidin concentrations and H-ORAC of apples cultivated in Japan. Food Science and Technology Research, 22(4), 563–568. https://doi.org/10.3136/fstr.22.563.

    CAS  Article  Google Scholar 

  28. Pissard, A., Fernández Pierna, J. A., Baeten, V., Sinnaeve, G., Lognay, G., Mouteau, A., Dupont, P., Rondia, A., & Lateur, M. (2013). Non-destructive measurement of vitamin C, total polyphenol and sugar content in apples using near-infrared spectroscopy. Journal of the Science of Food and Agriculture, 93(2), 238–244. https://doi.org/10.1002/jsfa.5779.

    CAS  Article  PubMed  Google Scholar 

  29. Rajalahti, T., Arneberg, R., Kroksveen, A. C., Berle, M., Myhr, K. M., & Kvalheim, O. M. (2009). Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Analytical Chemistry, 81(7), 2581–2590. https://doi.org/10.1021/ac802514y.

    CAS  Article  PubMed  Google Scholar 

  30. Renard, C. M. G. C., Watrelot, A. A., & Le Bourvellec, C. (2017). Interactions between polyphenols and polysaccharides: mechanisms and consequences in food processing and digestion. Trends in Food Science & Technology, 60, 43–51. https://doi.org/10.1016/j.tifs.2016.10.022.

    CAS  Article  Google Scholar 

  31. Shen, F., Niu, X., Yang, D., Ying, Y., Li, B., Zhu, G., & Wu, J. (2010). Determination of amino acids in Chinese rice wine by Fourier transform near-infrared spectroscopy. Journal of Agriculture and Food Chemistry, 58(17), 9809–9816. https://doi.org/10.1021/jf1017912.

    CAS  Article  Google Scholar 

  32. Sikorska, E., Glisuzynska-Swiglo, A., Insinska-Rak, M., Khmelinskii, I., De Keukeleire, D., & Sikorski, M. (2008). Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. Analytica Chimica Acta, 613(2), 207–217. https://doi.org/10.1016/j.aca.2008.02.063.

    CAS  Article  PubMed  Google Scholar 

  33. Trivittayasil, V., Kameya, H., Shoji, T., Tsuta, M., Kokawa, M., & Sugiyama, J. (2017). Simultaneous estimation of scavenging capacities of peach extract for multiple reactive oxygen species by fluorescence fingerprint method. Food Chemistry, 232, 523–530. https://doi.org/10.1016/j.foodchem.2017.04.011.

    CAS  Article  PubMed  Google Scholar 

  34. Trivittayasil, V., Tsuta, M., Kasai, S., Matsuo, Y., Sekiyama, Y., Shoji, T., Aiyama, R., Kokawa, M., & Sugiyama, J. (2018). Classification of 1-methylcyclopropene treated apples by fluorescence fingerprint using partial least squares discriminant analysis with stepwise selectivity ratio variable selection method. Chemometrics and Intelligent Laboratory Systems, 175, 30–36. https://doi.org/10.1016/j.chemolab.2018.02.004.

    CAS  Article  Google Scholar 

  35. Williams, P. C., & Sobering, D. C. (1993). Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, 1(1), 25–32.

    CAS  Article  Google Scholar 

  36. Włodarska, K., Pawlak-Lemańska, K., Khmelinskii, I., & Sikorska, E. (2017). Screening of antioxidant properties of the apple juice using the front-face synchronous fluorescence and chemometrics. Food Analytical Methods, 10(5), 1582–1591. https://doi.org/10.1007/s12161-016-0711-3.

    Article  Google Scholar 

  37. Wojdylo, A., Oszmianski, J., & Laskowski, P. (2008). Polyphenolic compounds and antioxidant activity of new and old apple varieties. Journal of Agriculture and Food Chemistry, 56(15), 6520–6530. https://doi.org/10.1021/jf800510j.

    CAS  Article  Google Scholar 

  38. Xie, L. J., Ye, X. Q., Liu, D. H., & Ying, Y. B. (2008). Application of principal component-radial basis function neural networks (PC-RBFNN) for the detection of water-adulterated bayberry juice by near-infrared spectroscopy. Journal of Zhejiang University SCIENCE B, 9(12), 982–989. https://doi.org/10.1631/jzus.B0820057.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Xie, L., Ye, X., Liu, D., & Ying, Y. (2009). Quantification of glucose, fructose and sucrose in bayberry juice by NIR and PLS. Food Chemistry, 114(3), 1135–1140. https://doi.org/10.1016/j.foodchem.2008.10.076.

    CAS  Article  Google Scholar 

  40. Yamashita, Y., & Ashida, H. (2016). Functionality of procyanidins (in Japanese). Kagaku to Seibutsu, 5(10), 747–752.

    Article  Google Scholar 

  41. Yu, H. Y., Niu, X. Y., Lin, H. J., Ying, Y. B., Li, B. B., & Pan, X. X. (2009). A feasibility study on on-line determination of rice wine composition by Vis–NIR spectroscopy and least-squares support vector machines. Food Chemistry, 113(1), 291–296. https://doi.org/10.1016/j.foodchem.2008.06.083.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Okino, S. conceived of the presented idea, carried out the experiment, analyzed the data, and took a lead in writing the manuscript. Kokawa, M. conceived of the presented idea, analyzed the data, and wrote the manuscript. Islam, M.Z. conceived of the presented idea and aided in interpreting the results. Kitamura, Y. conceived of the presented idea and aided in interpreting the results. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mito Kokawa.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okino, S., Kokawa, M., Islam, M.Z. et al. Effects of Apple Juice Manufacturing Processes on Procyanidin Concentration and Nondestructive Analysis by Fluorescence Fingerprint. Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02601-6

Download citation

Keywords

  • Excitation-emission matrix
  • Nondestructive measurement
  • Polyphenols
  • Wet milling
  • Pasteurization
  • Enzymatic treatment