Protective Effect of Natural and Processed Coconut Water by Non-thermal Technologies Against Oxidative Stress in Brine Shrimp (Artemia salina)

Abstract

Coconut water is widely consumed and appreciated due its sensory, nutritional, and functional characteristics. Despite being widely consumed, this beverage has a short shelf life that can be improved through processing technologies including non-thermal technologies. Although this processing is promising, it also can generate toxic bioactive compounds of natural and synthetic origin. Their safety has been long discussed, and concern for human food security is now clearly manifested by warnings added on products labels. The aim of this work was to evaluate the toxic and the protective effect of natural and processed coconut water by non-thermal technologies against oxidative stress in brine shrimp (Artemia salina). For acute toxicity test, A. salina nauplii instar II were exposed to different concentrations and ozone-processed (OTCW), plasma-processed (PTCW), and ultrasound-processed (UTCW) coconut water. The non-processed sample was the negative control. By the end of experiment (48 h), dead nauplii were counted and investigated under optical and electron microscopy. The protective effect was evaluated against H2O2 and morphological changes were also investigated. Coconut water treated with plasma and ultrasound was not toxic to Artemia salina nauplii at 10, 100, or 1000 μg mL−1; however, ozone-treated artificial seawater caused a mild toxicity to nauplii exposed to 1000 μg mL−1. All coconut water samples, included untreated samples, presented protective effect against oxidative stress caused by H2O2 reaching levels of 87.5% protection compared to control (24 h of experiment).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahsan, H., Ali, A., & Ali, R. (2003). Oxygen free radicals and antioxidants. The American Journal of Nursing, 131(4), 389–404. https://doi.org/10.1097/00000446-200304000-00022.

    Article  Google Scholar 

  2. Alves Filho, E. G., Sousa, V. M., Rodrigues, S., de Brito, E. S., & Fernandes, F. A. N. (2020). Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrasonics Sonochemistry, 63(April 2019), 104911. https://doi.org/10.1016/j.ultsonch.2019.104911.

    CAS  Article  PubMed  Google Scholar 

  3. Amado, D. A. V., Helmann, G. A. B., Detoni, A. M., de Carvalho, S. L. C., de Aguiar, C. M., Martin, C. A., et al. (2019). Antioxidant and antibacterial activity and preliminary toxicity analysis of four varieties of avocado (Persea americana Mill.). Brazilian Journal of Food Technology, 22, 1–11. https://doi.org/10.1590/1981-6723.04418.

    CAS  Article  Google Scholar 

  4. An, H. J., Sarkheil, M., Park, H. S., Yu, I. J., & Johari, S. A. (2019). Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 218(January), 62–69. https://doi.org/10.1016/j.cbpc.2019.01.002.

    CAS  Article  PubMed  Google Scholar 

  5. Apu, A., Hossan Bhuyan, S., Khatun, F., Sultana Liza, M., Matin, M., & Faruq Hossain, M. (2013). Assessment of cytotoxic activity of two medicinal plants using brine shrimp (Artemia salina) as an experimental tool. International Journal of Pharmaceutical Sciences and Research, 4(3), 1125–1130 www.ijpsr.com.

    Google Scholar 

  6. Arulvasu, C., Jennifer, S. M., Prabhu, D., & Chandhirasekar, D. (2014). Toxicity effect of silver nanoparticles in brine shrimp artemia. The Scientific World Journal, 2014, 1–10. https://doi.org/10.1155/2014/256919.

    CAS  Article  Google Scholar 

  7. AshaRani, P. V., Mun, G. L. K., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanomaterials. Technical Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2009, 2(2), 383–386.

    Google Scholar 

  8. Ates, M., Danabas, D., Ertit, B., Ilkay, T., Isil, U., Cicek, C., & Onder, C. (2020). Assessment of oxidative stress on Artemia salina and Daphnia magna after exposure to Zn and ZnO nanoparticles. Bulletin of Environmental Contamination and Toxicology, 104(2), 206–214. https://doi.org/10.1007/s00128-019-02751-6.

    CAS  Article  PubMed  Google Scholar 

  9. Augusto, P. E. D., Ibarz, R., Garvín, A., & Ibarz, A. (2015). Peroxidase (POD) and polyphenol oxidase (PPO) photo-inactivation in a coconut water model solution using ultraviolet (UV). Food Research International, 74, 151–159. https://doi.org/10.1016/j.foodres.2015.04.046.

    CAS  Article  PubMed  Google Scholar 

  10. Batel, A., Baumann, L., Carteny, C. C., Cormier, B., Keiter, S. H., & Braunbeck, T. (2020). Histological, enzymatic and chemical analyses of the potential effects of differently sized microplastic particles upon long-term ingestion in zebrafish (Danio rerio). Marine Pollution Bulletin, 153(January), 111022. https://doi.org/10.1016/j.marpolbul.2020.111022.

    CAS  Article  PubMed  Google Scholar 

  11. Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M., & Corbo, M. R. (2018). Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Comprehensive Reviews in Food Science and Food Safety, 17(1), 2–62. https://doi.org/10.1111/1541-4337.12299.

    Article  PubMed  Google Scholar 

  12. Bianchi, M. L. P., & Antunes, L. M. G. (1999). Release of mercury from human tissues stored in formalin solution. Revista de Nutrição, 12(2), 123–130. https://doi.org/10.1248/jhs1956.35.P28.

    CAS  Article  Google Scholar 

  13. Charoux, C. M. G., Free, L., Hinds, L. M., Vijayaraghavan, R. K., Daniels, S., O’Donnell, C. P., & Tiwari, B. K. (2020). Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of a model liquid food system and black pepper grains. Lwt, 118(October 2019), 108716. https://doi.org/10.1016/j.lwt.2019.108716.

    CAS  Article  Google Scholar 

  14. Chen, D., Chen, P., Cheng, Y., Peng, P., Liu, J., Ma, Y., Liu, Y., & Ruan, R. (2019). Deoxynivalenol decontamination in raw and germinating barley treated by plasma-activated water and intense pulsed light. Food and Bioprocess Technology, 12(2), 246–254. https://doi.org/10.1007/s11947-018-2206-2.

    CAS  Article  Google Scholar 

  15. Choi, J. S. (2017). Larvicidal effects of grapefruit seed extract (GSE) on brine shrimp Artemia salina. Toxicology and Environmental Health Sciences, 9(3), 209–214. https://doi.org/10.1007/s13530-017-0322-4.

    Article  Google Scholar 

  16. Clément, L., Hurel, C., & Marmier, N. (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. Chemosphere, 90(3), 1083–1090. https://doi.org/10.1016/j.chemosphere.2012.09.013.

    CAS  Article  PubMed  Google Scholar 

  17. Cruzeiro, C., Amaral, S., Rocha, E., & Rocha, M. J. (2017). Determination of 54 pesticides in waters of the Iberian Douro River estuary and risk assessment of environmentally relevant mixtures using theoretical approaches and Artemia salina and Daphnia magna bioassays. Ecotoxicology and Environmental Safety, 145(June), 126–134. https://doi.org/10.1016/j.ecoenv.2017.07.010.

    CAS  Article  PubMed  Google Scholar 

  18. da Rosa, A. P. P., Cavalcante, R. P., da Silva, D. A., da Silva, L. d. M., da Silva, T. F., Gozzi, F., et al. (2019). H2O2-assisted photoelectrocatalytic degradation of Mitoxantrone using CuO nanostructured films: Identification of by-products and toxicity. Science of the Total Environment, 651, 2845–2856. https://doi.org/10.1016/j.scitotenv.2018.10.173.

    CAS  Article  Google Scholar 

  19. Del Ré, P. V., & Jorge, N. (2012). Especiarias como antioxidantes naturais: Aplicações em alimentos e implicação na saúde. Revista Brasileira de Plantas Medicinais, 14(2), 389–399. https://doi.org/10.1590/S1516-05722012000200021.

    Article  Google Scholar 

  20. Dourado, C., Pinto, C., Barba, F. J., Lorenzo, J. M., Delgadillo, I., & Saraiva, J. A. (2019). Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends in Food Science and Technology, 88(February), 274–289. https://doi.org/10.1016/j.tifs.2019.03.015.

    CAS  Article  Google Scholar 

  21. Fotsis, T., Pepper, M. S., Aktas, E., Breit, S., Rasku, S., Adlercreutz, H., Wähälä, K., Montesano, R., & Schweigerer, L. (1997). Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Research, 57(14), 2916–2921.

    CAS  PubMed  Google Scholar 

  22. Garaventa, F., Gambardella, C., Di Fino, A., Pittore, M., & Faimali, M. (2010). Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys. Ecotoxicology, 19(3), 512–519. https://doi.org/10.1007/s10646-010-0461-8.

    CAS  Article  PubMed  Google Scholar 

  23. Gerbino, E., Ghibaudo, F., Tymczyszyn, E. E., Gomez-Zavaglia, A., & Hugo, A. A. (2020). Probiotics, galacto-oligosaccharides, and zinc antagonize biological effects of enterohaemorrhagic Escherichia coli on cultured cells and brine shrimp model. Lwt, 128(April), 109435. https://doi.org/10.1016/j.lwt.2020.109435.

    CAS  Article  Google Scholar 

  24. Gottschalk, F., Sun, T., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution. Elsevier Ltd., 181, 287–300. https://doi.org/10.1016/j.envpol.2013.06.003.

    CAS  Article  PubMed  Google Scholar 

  25. Guillén, S., Marcén, M., Mañas, P., & Cebrián, G. (2020). Differences in resistance to different environmental stresses and non-thermal food preservation technologies among Salmonella enterica subsp. enterica strains. Food Research International, 132(October 2019), 109042. https://doi.org/10.1016/j.foodres.2020.109042.

    CAS  Article  PubMed  Google Scholar 

  26. Halliwell, B., & Gutteridget, J. M. C. (1984). Oxygen toxicity,oxygen radicals, transition metals and disease. The Biochemical Journal, 219(1), 1–14.

    CAS  Article  Google Scholar 

  27. Hamza, F., Kumar, A. R., & Zinjarde, S. (2018a). Coculture induced improved production of biosurfactant by Staphylococcus lentus SZ2: Role in protecting Artemia salina against Vibrio harveyi. Enzyme and Microbial Technology, 114(March), 33–39. https://doi.org/10.1016/j.enzmictec.2018.03.008.

    CAS  Article  PubMed  Google Scholar 

  28. Hamza, F., Kumar, A. R., & Zinjarde, S. (2018b). Efficacy of cell free supernatant from Bacillus licheniformis in protecting Artemia salina against Vibrio alginolyticus and Pseudomonas gessardii. Microbial Pathogenesis, 116(February), 335–344. https://doi.org/10.1016/j.micpath.2018.02.003.

    Article  PubMed  Google Scholar 

  29. Hernández-Hernández, H. M., Moreno-Vilet, L., & Villanueva-Rodríguez, S. J. (2019). Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science and Emerging Technologies, 58(October), 102233. https://doi.org/10.1016/j.ifset.2019.102233.

    Article  Google Scholar 

  30. Jiang, B. P., Zhou, B., Lin, Z., Liang, H., & Shen, X. C. (2019). Recent advances in carbon nanomaterials for cancer phototherapy. Chemistry - A European Journal, 25(16), 3993–4004. https://doi.org/10.1002/chem.201804383.

    CAS  Article  Google Scholar 

  31. Johari, S. A., Rasmussen, K., Gulumian, M., Ghazi-Khansari, M., Tetarazako, N., Kashiwada, S., Asghari, S., Park, J. W., & Yu, I. J. (2019). Introducing a new standardized nanomaterial environmental toxicity screening testing procedure, ISO/TS 20787: aquatic toxicity assessment of manufactured nanomaterials in saltwater Lakes using Artemia sp. nauplii. Toxicology Mechanisms and Methods, 29(2), 95–109. https://doi.org/10.1080/15376516.2018.1512695.

    CAS  Article  PubMed  Google Scholar 

  32. Khoshnood, R., Jaafarzadeh, N., Jamili, S., Farshchi, P., & Taghavi, L. (2017). Acute toxicity of TiO2, CuO and ZnO nanoparticles in brine shrimp, Artemia franciscana. Iranian Journal of Fisheries Sciences, 16(4), 1287–1296.

    Google Scholar 

  33. Les, F., Prieto, J. M., Arbonés-Mainar, J. M., Valero, M. S., & López, V. (2015). Bioactive properties of commercialised pomegranate (Punica granatum) juice: Antioxidant, antiproliferative and enzyme inhibiting activities. Food & Function, 6(6), 2049–2057. https://doi.org/10.1039/c5fo00426h.

    CAS  Article  Google Scholar 

  34. Levaens, P., & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper, 305.

  35. Li, F., Chen, G., Zhang, B., & Fu, X. (2017). Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Research International, 100(August), 19–30. https://doi.org/10.1016/j.foodres.2017.08.035.

    CAS  Article  PubMed  Google Scholar 

  36. Lindsay, J., Metcalf, J. S., & Codd, G. A. (2006). Protection against the toxicity of microcystin-LR and cylindrospermopsin in Artemia salina and Daphnia spp. by pre-treatment with cyanobacterial lipopolysaccharide (LPS). Toxicon, 48(8), 995–1001. https://doi.org/10.1016/j.toxicon.2006.07.036.

    CAS  Article  PubMed  Google Scholar 

  37. Liu, Z., Esveld, E., Vincken, J. P., & Bruins, M. E. (2019). Pulsed electric field as an alternative pre-treatment for drying to enhance polyphenol extraction from fresh tea leaves. Food and Bioprocess Technology, 12(1), 183–192. https://doi.org/10.1007/s11947-018-2199-x.

    CAS  Article  PubMed  Google Scholar 

  38. Madhav, M. R., David, S. E. M., Kumar, R. S. S., Swathy, J. S., Bhuvaneshwari, M., Mukherjee, A., & Chandrasekaran, N. (2017). Toxicity and accumulation of copper oxide (CuO) nanoparticles in different life stages of Artemia salina. Environmental Toxicology and Pharmacology, 52(March), 227–238. https://doi.org/10.1016/j.etap.2017.03.013.

    CAS  Article  PubMed  Google Scholar 

  39. Manfra, L., Tornambè, A., Savorelli, F., Rotini, A., Canepa, S., Mannozzi, M., & Cicero, A. M. (2014). Ecotoxicity of diethylene glycol and risk assessment for marine environment. Journal of Hazardous Materials, 284, 130–135. https://doi.org/10.1016/j.jhazmat.2014.11.008.

    CAS  Article  PubMed  Google Scholar 

  40. Melchior, S., Calligaris, S., Bisson, G., & Manzocco, L. (2020). Understanding the impact of moderate-intensity pulsed electric fields (MIPEF) on structural and functional characteristics of pea, rice and gluten concentrates. Food and Bioprocess Technology, 13(12), 2145–2155. https://doi.org/10.1007/s11947-020-02554-2.

    CAS  Article  Google Scholar 

  41. Meyer, B. N., Ferrigni, N. R., & Putnam, J. E. (1982a). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(1), 31–34. https://doi.org/10.1055/s-2007-971236.

    CAS  Article  PubMed  Google Scholar 

  42. Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., McLaughlin, J. L., & Nichols, D. E. (1982b). Brine shrimp a convenient general bioassay for active plants constituents. Journal of Medicinal Plant Research, 45(5), 31–34. https://doi.org/10.1055/s-2007-971236.

    CAS  Article  PubMed  Google Scholar 

  43. Mieszczakowska-Frąc, M., Dyki, B., & Konopacka, D. (2016). Effects of ultrasound on polyphenol retention in apples after the application of predrying treatments in liquid medium. Food and Bioprocess Technology, 9(3), 543–552. https://doi.org/10.1007/s11947-015-1648-z.

    CAS  Article  Google Scholar 

  44. Moreira, S. A., Alexandre, E. M. C., Pintado, M., & Saraiva, J. A. (2019). Effect of emergent non-thermal extraction technologies on bioactive individual compounds profile from different plant materials. Food Research International, 115(May 2018), 177–190. https://doi.org/10.1016/j.foodres.2018.08.046.

    CAS  Article  PubMed  Google Scholar 

  45. Morgana, S., Estévez-Calvar, N., Gambardella, C., Faimali, M., & Garaventa, F. (2018). A short-term swimming speed alteration test with nauplii of Artemia franciscana. Ecotoxicology and Environmental Safety, 147(September 2017), 558–564. https://doi.org/10.1016/j.ecoenv.2017.09.026.

    CAS  Article  PubMed  Google Scholar 

  46. Motta, C. M., Simoniello, P., Arena, C., Capriello, T., Panzuto, R., Vitale, E., Agnisola, C., Tizzano, M., Avallone, B., & Ferrandino, I. (2019). Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment. Environmental Pollution, 253(1333), 1126–1135. https://doi.org/10.1016/j.envpol.2019.06.018.

    CAS  Article  PubMed  Google Scholar 

  47. Muthukrishnan, S., Kumar, T. S., & Rao, M. V. (2017). Activity of biogenic nanosilver and its toxicity assessment on Artemia salina - evaluation of mortality , accumulation and elimination: An experimental report. Journal of Environmental Chemical Engineering, 5(2), 1685–1695. https://doi.org/10.1016/j.jece.2017.03.004.

    CAS  Article  Google Scholar 

  48. Nunes, B. S., Carvalho, F. D., Guilhermino, L. M., & Van Stappen, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental Pollution, 144(2), 453–462. https://doi.org/10.1016/j.envpol.2005.12.037.

    CAS  Article  PubMed  Google Scholar 

  49. Ocaranza-Joya, V. S., Manjarrez-Alcivar, I., Ruizgonzález, L. E., Guerrero-Galván, S. R., & Vega-Villasante, F. (2019). Sensitivity of different stages of Artemia franciscana to potassium dichromate. Pan-American Journal of Aquatic Sciences, 14(1), 8–12.

    Google Scholar 

  50. Ozkan, Y., Altinok, I., Ilhan, H., & Sokmen, M. (2016). Determination of TiO 2 and AgTiO 2 nanoparticles in Artemia salina: Toxicity, morphological changes , uptake and depuration. Bulletin of Environmental Contamination and Toxicology, 96(1), 36–42. https://doi.org/10.1007/s00128-015-1634-1.

    CAS  Article  PubMed  Google Scholar 

  51. Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A. N., & Rodrigues, S. (2019). Cold plasma effects on functional compounds of siriguela juice. Food and Bioprocess Technology, 12(1), 110–121. https://doi.org/10.1007/s11947-018-2197-z.

    CAS  Article  Google Scholar 

  52. Pérez-Andrés, J. M., Charoux, C. M. G., Cullen, P. J., & Tiwari, B. K. (2018). Chemical modifications of lipids and proteins by nonthermal food processing technologies. Journal of Agricultural and Food Chemistry, 66(20), 5041–5054. https://doi.org/10.1021/acs.jafc.7b06055.

    CAS  Article  PubMed  Google Scholar 

  53. Piechowiak, T., Skóra, B., & Balawejder, M. (2020). Ozone treatment induces changes in antioxidative defense system in blueberry fruit during storage. Food and Bioprocess Technology, 13(7), 1240–1245. https://doi.org/10.1007/s11947-020-02450-9.

    CAS  Article  Google Scholar 

  54. Pool-Zobel, B. L., Bub, A., Müller, H., Wollowski, I., & Rechkemmer, G. (1997). Consumption of vegetables reduces genetic damage in humans: First results of a human intervention trial with carotenoid-rich foods. Carcinogenesis, 18(9), 1847–1850. https://doi.org/10.1093/carcin/18.9.1847.

    CAS  Article  PubMed  Google Scholar 

  55. Porto, E., Alves Filho, E. G., Silva, L. M. A., Fonteles, T. V., do Nascimento, R. B. R., Fernandes, F. A. N., et al. (2020). Ozone and plasma processing effect on green coconut water. Food Research International, 131(January), 109000. https://doi.org/10.1016/j.foodres.2020.109000.

    CAS  Article  PubMed  Google Scholar 

  56. Rocha-Filho, C. A. A., Albuquerque, L. P., Silva, L. R. S., Silva, P. C. B., Coelho, L. C. B. B., Navarro, D. M. A. F., Albuquerque, M. C. P. A., Melo, A. M. M. A., Napoleão, T. H., Pontual, E. V., & Paiva, P. M. G. (2015). Assessment of toxicity of Moringa oleifera flower extract to Biomphalaria glabrata, Schistosoma mansoni and Artemia salina. Chemosphere, 132, 188–192. https://doi.org/10.1016/j.chemosphere.2015.03.041.

    CAS  Article  PubMed  Google Scholar 

  57. Sarkheil, M., Johari, S. A., An, H. J., Asghari, S., Park, H. S., Sohn, E. K., & Yu, I. J. (2018). Acute toxicity, uptake, and elimination of zinc oxide nanoparticles (ZnO NPs) using saltwater microcrustacean, Artemia franciscana. Environmental Toxicology and Pharmacology, 57(October 2017), 181–188. https://doi.org/10.1016/j.etap.2017.12.018.

    CAS  Article  PubMed  Google Scholar 

  58. Shaala, N. M., Zulkifli, S. Z., Ismail, A., Azmai, M. N. A., & Mohamat-Yusuff, F. (2015). Selected morphological changes in nauplii of brine shrimp (Artemia salina) after tributyltin chloride (TBTCL) exposure. World Applied Sciences Journal, 33(8), 1334–1340. https://doi.org/10.5829/idosi.wasj.2015.33.08.15230.

    CAS  Article  Google Scholar 

  59. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037.

    CAS  Article  Google Scholar 

  60. Sirdaarta, J., & Cock, I. E. (2010). Effect of Aloe barbadensis Miller juice on oxidative stress biomarkers in aerobic cells using Artemia franciscana as a model. Phytotherapy Research, 24(3), 360–364. https://doi.org/10.1002/ptr.2946.

    CAS  Article  PubMed  Google Scholar 

  61. Sucupira, N. R., Alves Filho, E. G., Silva, L. M. A., de Brito, E. S., Wurlitzer, N. J., & Sousa, P. H. M. (2017). NMR spectroscopy and chemometrics to evaluate different processing of coconut water. Food Chemistry, 216, 217–224. https://doi.org/10.1016/j.foodchem.2016.08.035.

    CAS  Article  PubMed  Google Scholar 

  62. Victoria Barahona, M., & Sánchez-Fortún, S. (2007). Protective effect induced by atropine, carbamates, and 2-pyridine aldoxime methoiodide Artemia salina larvae exposed to fonofos and phosphamidon. Ecotoxicology and Environmental Safety, 66(1), 65–73. https://doi.org/10.1016/j.ecoenv.2005.10.003.

    CAS  Article  PubMed  Google Scholar 

  63. Vollmer, K., Santarelli, S., Vásquez-Caicedo, A. L., Iglesias, S. V., Frank, J., Carle, R., & Steingass, C. B. (2020). Non-thermal processing of pineapple (Ananas comosus [L.] Merr.) juice using continuous pressure change technology (PCT): Effects on physical traits, microbial loads, enzyme activities, and phytochemical composition. Food and Bioprocess Technology, 13(10), 1833–1847. https://doi.org/10.1007/s11947-020-02520-y.

    CAS  Article  Google Scholar 

  64. Yi, X., Zhang, K., Liu, R., Giesy, J. P., Li, Z., Li, W., Zhan, J., Liu, L., & Gong, Y. (2020). Transcriptomic responses of Artemia salina exposed to an environmentally relevant dose of Alexandrium minutum cells or gonyautoxin2/3. Chemosphere, 238, 124661. https://doi.org/10.1016/j.chemosphere.2019.124661.

    CAS  Article  PubMed  Google Scholar 

  65. Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: A review. International Journal of Food Science and Technology, 54(1), 1–13. https://doi.org/10.1111/ijfs.13903.

    CAS  Article  Google Scholar 

  66. Zulaikhah, S. T. (2019). Health benefits of tender coconut water (TCW). International Journal of Pharmaceutical Sciences and Research, 10(2), 474–480. https://doi.org/10.13040/IJPSR.0975-8232.10(2).474-80.

    CAS  Article  Google Scholar 

Download references

Funding

TBARM acknowledge funding from CNPq (grant 350023/2020-4) and Central Analítica-UFC/CT-INFRA-FINEP/Pro-Equipamentos-CAPES/CNPq-SisNano-MCTI 2019 (Grant 442577/2019-2). Capes, INCT and FUNCAP.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thaiz Batista Azevedo Rangel Miguel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 47 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miguel, T.B.A.R., Porto, E.C.M., de Paiva Pinheiro, S.K. et al. Protective Effect of Natural and Processed Coconut Water by Non-thermal Technologies Against Oxidative Stress in Brine Shrimp (Artemia salina). Food Bioprocess Technol 14, 702–716 (2021). https://doi.org/10.1007/s11947-021-02600-7

Download citation

Keywords

  • Artemia salina
  • Coconut water
  • Non-thermal processing
  • Protective effect
  • Toxicity