Evaluation of Physico-mechanical and Antifungal Properties Of Gluten-based Film Incorporated with Vanillin, Salicylic Acid, and Montmorillonite (Cloisite 15A)


A novel wheat gluten (WG) film was developed by adding vanillin, salicylic acid, and montmorillonite cloisite 15A (MMT). Some physico-mechanical properties, including thickness, tensile strength (TS), elongation at break (E), yellowness index (YI), whiteness index (WI), and water solubility (SWF) of the film were investigated using response surface methodology. Results revealed that maximum tensile strength occurred at the highest level of MMT and salicylic acid, and that the effect of MMT on elongation at break was considerable. The YI and WI of the composite films increased respectively, while the WI value and increment of MMT reduced. Moreover, the water solubility was raised with an increasing amount of MMT, vanillin, and salicylic content in the films. The optimum level of the variables obtained by the software was 0.92% vanillin, 0.94% salicylic acid, and 1.92% MMT (% w/w). The intensity and shifting of some absorption peaks in the FTIR spectra pattern confirmed the interaction of functional groups of additive and gluten chain. SEM images revealed an even distribution of the particles with no evidence of particle agglomeration in WG/vanillin/salicylic acid/MMT. Inhibition zone around the nanocomposite films against Aspergillus niger and Alternaria alternate strains indicated antifungal activity of WG nanocomposite films, which was more considerably observed for Aspergillus niger.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6





Tensile strength


Elongation at break


Yellowness index


Whiteness index


Water solubility film


Wheat gluten


Response surface method


Central composite design


Fourier transform infrared spectroscopy


Scanning electron microscope


Potato dextrose agar


Analysis of variance


Coefficient of variation


  1. Ağçeli, G. K., & Cihangir, N. (2020). Synthesis, characterization and antimicrobial performance of novel nanostructured biopolymer film based on levan/clay/LL-37 antimicrobial peptide. Biocatalysis and Agricultural Biotechnology, 23, 101421.

    Google Scholar 

  2. Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M. (2013). Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. Journal of Food Engineering, 117(1), 26–33.

    CAS  Google Scholar 

  3. Aydogdu, A., Radke, C. J., Bezci, S., & Kirtil, E. (2020). Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films. International Journal of Biological Macromolecules, 148, 110–120.

    CAS  PubMed  Google Scholar 

  4. Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P. A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/carboxymethyl cellulose/cellulose nanofiber using response surface methodology. Polymer Testing, 78, 105989.

    Google Scholar 

  5. Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., & Vicente, A. A. (2009). Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23(7), 1895–1902.

    CAS  Google Scholar 

  6. Costa, L. A.d., Diogenes, I. C. N., Oliveira, M.d. A., Ribeiro, S. F., Furtado, R. F., Bastos, M.d. S. R., Silva, M. A. S., & Benevides, S. D. (2020). Smart film of jackfruit seed starch as a potential indicator of fish freshness. Food Science and Technology.

  7. Davachi, S. M., & Shekarabi, A. S. (2018). Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay. International Journal of Biological Macromolecules, 113, 66–72.

    CAS  PubMed  Google Scholar 

  8. Erkmen, O., & Onder, B. A. (2018). General characteristics of edible films. Journal of Food Biotechnology Research, 2, 1–4.

    Google Scholar 

  9. Fache, M., Boutevin, B., & Caillol, S. (2015). Vanillin, a key-intermediate of biobased polymers. European Polymer Journal, 68, 488–502.

    CAS  Google Scholar 

  10. Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57–64.

    CAS  Google Scholar 

  11. Fathi Achachlouei, B., & Zahedi, Y. (2018). Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydrate Polymers, 199, 415–425.

    CAS  PubMed  Google Scholar 

  12. Fatyeyeva, K., Chappey, C., Marais, S. (2017). Biopolymer/clay nanocomposites as the high barrier packaging material: recent advances. 425-463.

  13. Guimarães, A., Ramos, Ó., Cerqueira, M., Venâncio, A., & Abrunhosa, L. (2020). Active whey protein edible films and coatings incorporating Lactobacillus buchneri for Penicillium nordicum control in cheese. Food and Bioprocess Technology, 13(6), 1074–1086.

    Google Scholar 

  14. Gutiérrez, T. J., & Alvarez, V. A. (2018). Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocolloids, 77, 407–420.

    Google Scholar 

  15. Han, J. H. (2014). Chapter 9 - Edible films and coatings: a review, innovations in food packaging (Second Edition) (pp. 213–255). San Diego: Academic Press.

    Google Scholar 

  16. Henrik Ullsten, N., Gällstedt, M., Johansson, E., Gräslund, A., & Hedenqvist, M. S. (2006). Enlarged processing window of plasticized wheat gluten using salicylic acid. Biomacromolecules, 7(3), 771–776.

    PubMed  Google Scholar 

  17. Hernández-Muñoz, P., Villalobos, R., & Chiralt, A. (2004a). Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocolloids, 18(3), 403–411.

    Google Scholar 

  18. Hernández-Muñoz, P., Villalobos, R., & Chiralt, A. (2004b). Effect of thermal treatments on functional properties of edible films made from wheat gluten fractions. Food Hydrocolloids, 18(4), 647–654.

    Google Scholar 

  19. Huiyu Bai, R. K., Cheng, Y., Liu, X., & Zhang, L. (2010). Effect of salicylic acid on the mechanical properties and water resistance of soy protein isolate films. Polymers & Polymer Composites, 18.

  20. Koehler, P., Wieser, H., Konitzer, K. (2014). Gluten—the precipitating factor. 97-148.

  21. Kuktaite, R., Türe, H., Hedenqvist, M. S., Gällstedt, M., & Plivelic, T. S. (2014). Gluten biopolymer and nanoclay-derived structures in wheat gluten–urea–clay composites: Relation to barrier and mechanical properties. ACS Sustainable Chemistry & Engineering, 2(6), 1439–1445.

    CAS  Google Scholar 

  22. Lim, G.-O., Jang, S.-A., & Song, K. B. (2010). Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. Journal of Food Engineering, 98(4), 415–420.

    CAS  Google Scholar 

  23. Marcet, I., Álvarez, C., Paredes, B., Rendueles, M., & Díaz, M. (2017). Transparent and edible films from ultrasound-treated egg yolk granules. Food and Bioprocess Technology, 11, 735–747.

    Google Scholar 

  24. McGlashan, S. A., & Halley, P. J. (2003). Preparation and characterisation of biodegradable starch-based nanocomposite materials. Polymer International, 52(11), 1767–1773.

    CAS  Google Scholar 

  25. Micard, V., Belamri, R., Morel, M.-H., & Guilbert, S. (2000). Properties of chemically and physically treated wheat gluten films. Journal of Agricultural and Food Chemistry, 48(7), 2948–2953.

    CAS  PubMed  Google Scholar 

  26. Molinaro, S., Cruz Romero, M., Boaro, M., Sensidoni, A., Lagazio, C., Morris, M., & Kerry, J. (2013). Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. Journal of Food Engineering, 117(1), 113–123.

    CAS  Google Scholar 

  27. Montgomery, D.-C. (2012). Design-and-analysis of experiments-Wiley. Eighth edition, 757.

  28. Pandey, J.K., Singh, R.P. (2005). Green nanocomposites from renewable resources: Effect of plasticizer on the structure and material properties of clay-filled starch. Starch 57, 8-15.

  29. Pandey, N., Joshi, S. K., Singh, C. P., Kumar, S., Rajput, S., & Khandal, R. K. (2013). Enhancing shelf life of litchi (Litchi chinensis) fruit through integrated approach of surface coating and gamma irradiation. Radiation Physics and Chemistry, 85, 197–203.

    CAS  Google Scholar 

  30. Peng, H., Xiong, H., Li, J., Xie, M., Liu, Y., Bai, C., & Chen, L. (2010). Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chemistry, 121(1), 23–28.

    CAS  Google Scholar 

  31. Pizzolitto, R. P., Barberis, C. L., Dambolena, J. S., Herrera, J. M., Zunino, M. P., Magnoli, C. E., Rubinstein, H. R., Zygadlo, J. A., & Dalcero, A. M. (2015). Inhibitory effect of natural phenolic compounds on Aspergillus parasiticus growth. Journal of Chemistry, 2015, 1–7.

    Google Scholar 

  32. Rossi-Márquez, G., Han, J. H., García-Almendárez, B., Castaño-Tostado, E., & Regalado-González, C. (2009). Effect of temperature, pH and film thickness on nisin release from antimicrobial whey protein isolate edible films. Journal of the Science of Food and Agriculture, 89(14), 2492–2497.

    Google Scholar 

  33. Rostamzad, H., Paighambari, S. Y., Shabanpour, B., Ojagh, S. M., & Mousavi, S. M. (2016). Improvement of fish protein film with nanoclay and transglutaminase for food packaging. Food Packaging and Shelf Life, 7, 1–7.

    Google Scholar 

  34. Saberi, B., Thakur, R., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2016). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 86, 342–352.

    CAS  Google Scholar 

  35. Sangsuwan, J., Rattanapanone, N., & Rachtanapun, P. (2008). Effects of vanillin and plasticizer on properties of chitosan-methyl cellulose based film. Journal of Applied Polymer Science, 109(6), 3540–3545.

    CAS  Google Scholar 

  36. Silverstein, R. M., & Bassler, G. C. (1962). Spectrometric identification of organic compounds. Journal of Chemical Education, 39(11), 546.

    CAS  Google Scholar 

  37. Singh, N., Georget, D. M. R., Belton, P. S., & Barker, S. A. (2010). Physical properties of zein films containing salicylic acid and acetyl salicylic acid. Journal of Cereal Science, 52, 282–287.

    CAS  Google Scholar 

  38. Sothornvit, R., Rhim, J.-W., & Hong, S.-I. (2009). Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. Journal of Food Engineering, 91(3), 468–473.

    CAS  Google Scholar 

  39. Sung-Woo Cho, T.O.J.B., Helena Halonen, Mikael Gällstedt, A.S.H. (2012). Wheat gluten-laminated paperboard with improved moisture barrier properties: A new concept using a plasticizer (glycerol) containing a hydrophobic component (oleic acid). International Journal of Polymer Science, 1-9.

  40. Tanada-Palmu, P. S., & Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36(2), 199–208.

    CAS  Google Scholar 

  41. Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71–78.

    CAS  Google Scholar 

  42. Trinetta, V. (2016). Edible packaging, reference module in food science. Elsevier.

  43. Uddin, F. (2013). Studies in finishing effects of clay mineral in polymers and synthetic fibers. Advances in Materials Science and Engineering, 2013, 1–13.

    Google Scholar 

  44. Verbeek, C. J. R., & van den Berg, L. E. (2010). Extrusion processing and properties of protein-based thermoplastics. Macromolecular Materials and Engineering, 295(1), 10–21.

    CAS  Google Scholar 

  45. Wittaya, T. (2012). Protein-based edible films: Characteristics and improvement of properties.

  46. Wolf, F. T., & Wolf, F. A. (2018). Chemical agents for the control of molds on meats. Mycologia, 42, 344–366.

    Google Scholar 

  47. Xavier, J. R., Babusha, S. T., George, J., & Ramana, K. V. (2015). Material properties and antimicrobial activity of polyhydroxybutyrate (PHB) films incorporated with vanillin. Applied Biochemistry and Biotechnology, 176(5), 1498–1510.

    CAS  PubMed  Google Scholar 

  48. Zheng, T., Yu, X., & Pilla, S. (2017). Mechanical and moisture sensitivity of fully bio-based dialdehyde carboxymethyl cellulose cross-linked soy protein isolate films. Carbohydrate Polymers, 157, 1333–1340.

    CAS  PubMed  Google Scholar 

  49. Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., & Qin, C. (2019). Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. International Journal of Biological Macromolecules, 135, 344–352.

    CAS  PubMed  Google Scholar 

  50. Zhu, H., Zhang, Y., Tian, J., & Chu, Z. (2018). Effect of a new shell material—jackfruit seed starch on novel flavor microcapsules containing vanilla oil. Industrial Crops and Products, 112, 47–52.

    CAS  Google Scholar 

  51. Zink, J., Wyrobnik, T., Prinz, T., Schmid, M. (2016). Physical, Chemical and biochemical modifications of protein-based films and coatings: An extensive review. International Journal of Molecular Sciences 17.

Download references

Author information



Corresponding author

Correspondence to Aazam Aarabi.

Ethics declarations

Competing Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khashayary, S., Aarabi, A. Evaluation of Physico-mechanical and Antifungal Properties Of Gluten-based Film Incorporated with Vanillin, Salicylic Acid, and Montmorillonite (Cloisite 15A). Food Bioprocess Technol 14, 665–678 (2021). https://doi.org/10.1007/s11947-021-02598-y

Download citation


  • Antimicrobial film
  • Bionanocomposite
  • Biodegradability
  • Response surface method (RSM)