Anethum graveolens Essential Oil Encapsulation in Chitosan Nanomatrix: Investigations on In Vitro Release Behavior, Organoleptic Attributes, and Efficacy as Potential Delivery Vehicles Against Biodeterioration of Rice (Oryza sativa L.)

Abstract

The study deals with first time report on encapsulation of chemically characterized Anethum graveolens essential oil within chitosan nanomatrix (Nm-AGEO) using ionic gelation technique to enhance the antimicrobial, antiaflatoxigenic, antioxidant, and in situ efficacy against stored rice biodeterioration. GC-MS analysis of AGEO revealed dill apiol (33.79%), carvone (27.19%), and limonene (13.76%) as major components. Nm-AGEO characterization through scanning electron microscopy (SEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FT-IR) confirmed successful encapsulation of AGEO within chitosan as an encapsulant. Biphasic and sustained release pattern reflected controlled volatilization of bioactives, helpful in shelf-life extension of stored food commodities. Nm-AGEO caused significant impairment in fungal ergosterol biosynthesis and enhanced leakage of vital ions indicating destabilization in plasma membrane integrity. Inhibition of methylglyoxal (aflatoxin inducer) biosynthesis by Nm-AGEO confirmed novel antiaflatoxigenic mechanism of action, suggesting its future exploitation for development of aflatoxin-resistant rice varieties through green transgenics. Nm-AGEO induced impairment in antioxidant defense enzymes (SOD, CAT) and non-enzymatic defense biomolecules GSH and GSSG revealing biochemical mechanism of action. In silico modeling of carvone and limonene with Omt-A and Ver-1 genes suggested molecular mechanism of aflatoxin inhibition. Treatment of rice samples with Nm-AGEO caused significant protection from aflatoxin B1 contamination and lipid peroxidation without altering organoleptic properties. Moreover, favorable safety profile for mammalian system and non-phytotoxic nature of chitosan-fabricated AGEO nanoemulsion-based delivery system recommend attention of food industries for its formulation as potential green preservative.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adams, R. P. (2017). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Carol Stream: Allured Publishing Corporation.

    Google Scholar 

  2. Adisa, R. A., Kolawole, N., Sulaimon, L. A., Brai, B., & Ijaola, A. (2019). Alterations of antioxidant status and mitochondrial succinate dehydrogenase activity in the liver of Wistar strain albino rats treated with by ethanol extracts of Annona senegalensis Pers (Annonaceae) Stem Bark. Toxicological Research, 35(1), 13–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release, 100(1), 5–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Ahmadi, Z., Saber, M., Akbari, A., & Mahdavinia, G. R. (2018). Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicology and Environmental Safety, 161, 111–119.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Ali, N. (2019). Aflatoxins in rice: worldwide occurrence and public health perspectives. Toxicology Reports, 6, 1188–1197.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Amalraj, A., Haponiuk, J. T., Thomas, S., & Gopi, S. (2020). Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. International Journal of Biological Macromolecules, 151, 366–375.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Amiri, A., Mousakhani-Ganjeh, A., Amiri, Z., Guo, Y. G., Singh, A. P., & Kenari, R. E. (2020). Fabrication of cumin loaded-chitosan particles: characterized by molecular, morphological, thermal, antioxidant, and anticancer properties as well as its utilization in food system. Food Chemistry, 310, 125821.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food and Bioprocess Technology, 12(7), 1205–1219.

    CAS  Article  Google Scholar 

  9. Badawy, M. E., Marei, G. I. K., Rabea, E. I., & Taktak, N. E. (2019). Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pesticide Biochemistry and Physiology, 158, 185–200.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Bahmankar, M., Mortazavian, S. M. M., Tohidfar, M., Noori, S. A. S., Darbandi, A. I., & Al-fekaiki, D. F. (2019). Chemotypes and morpho-physiological characters affecting essential oil yield in Iranian cumin landraces. Industrial Crops and Products, 128, 256–269.

    CAS  Article  Google Scholar 

  11. Cao, J. Q., Pang, X., Guo, S. S., Wang, Y., Geng, Z. F., Sang, Y. L., Guo, P. J., & Du, S. S. (2019). Pinene-rich essential oils from Haplophyllum dauricum (L.) G. Don display anti-insect activity on two stored-product insects. International Biodeterioration and Biodegradation, 140, 1–8.

    CAS  Article  Google Scholar 

  12. Chaudhari, A. K., Singh, V. K., Das, S., Singh, B. K., & Dubey, N. K. (2020). Antimicrobial, aflatoxin B1 inhibitory and lipid oxidation suppressing potential of anethole-based chitosan nanoemulsion as novel preservative for protection of stored maize. Food and Bioprocess Technology, 13(8), 1462–1477.

    CAS  Article  Google Scholar 

  13. Choi, H., Lee, J., Chang, Y. S., Woo, E. R., & Lee, D. G. (2013). Isolation of (-)-olivil-9′-O-β-d-glucopyranoside from Sambucus williamsii and its antifungal effects with membrane-disruptive action. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(8), 2002–2006.

    CAS  Article  Google Scholar 

  14. Choi, S., Seo, H. S., Lee, K. R., Lee, S., Lee, J., & Lee, J. (2019). Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography–mass spectrometry. Food Chemistry, 276, 572–582.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Clemente, I., Aznar, M., & Nerín, C. (2019). Synergistic properties of mustard and cinnamon essential oils for the inactivation of foodborne moulds in vitro and on Spanish bread. International Journal of Food Microbiology, 298, 44–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Da Silva Gündel, S., de Souza, M. E., Quatrin, P. M., Klein, B., Wagner, R., Gündel, A., de Almeida Vaucher, R., Santos, R. C. V., & Ourique, A. F. (2018). Nanoemulsions containing Cymbopogon flexuosus essential oil: development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microbial Pathogenesis, 118, 268–276.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  17. Dammak, I., Hamdi, Z., El Euch, S. K., Zemni, H., Mliki, A., Hassouna, M., & Lasram, S. (2019). Evaluation of antifungal and anti-ochratoxigenic activities of Salvia officinalis, Lavandula dentata and Laurus nobilis essential oils and a major monoterpene constituent 1, 8-cineole against Aspergillus carbonarius. Industrial Crops and Products, 128, 85–93.

    CAS  Article  Google Scholar 

  18. Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., Upadhyay, N., Singh, P., Sharma, S., & Dubey, N. K. (2019). Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. International Journal of Biological Macromolecules, 133, 294–305.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., Upadhyay, N., Singh, A., Saha, A. K., Ray Chaudhury, S., Prakash, B. & Dubey, N. K. (2020a). Assessment of chemically characterised Myristica fragrans essential oil against fungi contaminating stored scented rice and its mode of action as novel aflatoxin inhibitor. Natural Product Research, 34, 1611–1615.

  20. Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2020b). Myristica fragrans essential oil nanoemulsion as novel green preservative against fungal and aflatoxin contamination of food commodities with emphasis on biochemical mode of action and molecular docking of major components. LWT-Food Science and Technology, 130, 109495.

  21. Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021a). Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B1 contamination and deterioration of nutritional qualities. Food Chemistry, 344, 128574.

  22. Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021b). Eugenol loaded chitosan nanoemulsion for food protection and inhibition of aflatoxin B1 synthesizing genes based on molecular docking. Carbohydrate Polymers, 255, 117339.

  23. Dubey, N. K., Kumar, A., & Kumar, A. (2017). Efficacy of Luvunga scandens Roxb. essential oil as antifungal, aflatoxin suppressor and antioxidant. Journal of Food Technology and Preservation, 1, 37–41.

    Google Scholar 

  24. Dwivedy, A. K., Singh, V. K., Prakash, B., & Dubey, N. K. (2018). Nanoencapsulated Illicium verum Hook. f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation. Food and Chemical Toxicology, 111, 102–113.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Esmaeili, A., & Asgari, A. (2015). In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 81, 283–290.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6(3), 628–647.

    CAS  Article  Google Scholar 

  27. Feyzioglu, G. C., & Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT-Food Science and Technology, 70, 104–110.

    CAS  Article  Google Scholar 

  28. Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M. A., & Azizi, M. H. (2016). Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food and Bioprocess Technology, 9(7), 1187–1201.

    CAS  Article  Google Scholar 

  29. Gómez-Pastora, J., Bringas, E., & Ortiz, I. (2014). Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal, 256, 187–204.

    Article  CAS  Google Scholar 

  30. Grintzalis, K., Vernardis, S. I., Klapa, M. I., & Georgiou, C. D. (2014). Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Applied and Environmental Microbiology, 80(18), 5561–5571.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Hadidi, M., Pouramin, S., Adinepour, F., Haghani, S., & Jafari, S. M. (2020). Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydrate Polymers, 236, 116075.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Hasani, S., Ojagh, S. M., & Ghorbani, M. (2018). Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: study on its physical and structural characteristics. International Journal of Biological Macromolecules, 115, 143–151.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Hasheminejad, N., & Khodaiyan, F. (2020). The effect of clove essential oil loaded chitosan nanoparticles on the shelf life and quality of pomegranate arils. Food Chemistry, 309, 125520.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Hasheminejad, N., Khodaiyan, F., & Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry, 275, 113–122.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Hemmatkhah, F., Zeynali, F., & Almasi, H. (2020). Encapsulated cumin seed essential oil-loaded active papers: characterization and evaluation of the effect on quality attributes of beef hamburger. Food and Bioprocess Technology, 13(3), 533–547.

    CAS  Article  Google Scholar 

  36. Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56.

    CAS  PubMed  Article  Google Scholar 

  37. Hussain, M. R., & Maji, T. K. (2008). Preparation of genipin cross-linked chitosan-gelatin microcapsules for encapsulation of Zanthoxylum limonella oil (ZLO) using salting-out method. Journal of Microencapsulation, 25(6), 414–420.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51(1), 45–66.

    CAS  PubMed  Article  Google Scholar 

  39. Jiang, Y., Lan, W., Sameen, D. E., Ahmed, S., Qin, W., Zhang, Q., Chen, H., Dai, J., He, L., & Liu, Y. (2020). Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging. International Journal of Biological Macromolecules, 160, 340–351.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Kalagatur, N. K., Nirmal Ghosh, O. S., Sundararaj, N., & Mudili, V. (2018). Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Frontiers in Pharmacology, 9, 610.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Karam, T. K., Ortega, S., Nakamura, T. U., Auzély-Velty, R., & Nakamura, C. V. (2020). Development of chitosan nanocapsules containing essential oil of Matricaria chamomilla L. for the treatment of cutaneous leishmaniasis. International Journal of Biological Macromolecules, 162, 199–208.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Kaur, N., Chahal, K. K., Kumar, A., Singh, R., & Bhardwaj, U. (2019). Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. Journal of Food Biochemistry, 43(4), e12782.

  43. Kong, J., Zhang, Y., Ju, J., Xie, Y., Guo, Y., Cheng, Y., & Yao, W. (2019). Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in postharvest preservation of tomatoes. Food Chemistry, 285, 380–388.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Kou, X. H., Guo, W. L., Guo, R. Z., Li, X. Y., & Xue, Z. H. (2014). Effects of chitosan, calcium chloride, and pullulan coating treatments on antioxidant activity in pear cv.“Huang guan” during storage. Food and Bioprocess Technology, 7(3), 671–681.

    CAS  Article  Google Scholar 

  45. Liu, K., Li, Y., Chen, F., & Yong, F. (2017). Lipid oxidation of brown rice stored at different temperatures. International Journal of Food Science and Technology, 52(1), 188–195.

    CAS  Article  Google Scholar 

  46. Liu, Y., Tang, T., Duan, S., Qin, Z., Zhao, H., Wang, M., Li, C., Zhang, Z., Liu, A., Han, G., & Wu, D. (2020). Applicability of rice doughs as promising food materials in extrusion-based 3D printing. Food and Bioprocess Technology, 13(3), 548–563.

    CAS  Article  Google Scholar 

  47. López-Meneses, A. K., Plascencia-Jatomea, M., Lizardi-Mendoza, J., Fernández-Quiroz, D., Rodríguez-Félix, F., Mouriño-Pérez, R. R., & Cortez-Rocha, M. O. (2018). Schinus molle L. essential oil-loaded chitosan nanoparticles: preparation, characterization, antifungal and anti-aflatoxigenic properties. LWT-Food Science and Technology, 96, 597–603.

    Article  CAS  Google Scholar 

  48. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Measurement of protein with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Article  Google Scholar 

  49. Lv, C., Wang, P., Ma, L., Zheng, M., Liu, Y., & Xing, F. (2018). Large-scale comparative analysis of eugenol-induced/repressed genes expression in Aspergillus flavus using RNA-seq. Frontiers in Microbiology, 9, 1116.

    PubMed  PubMed Central  Article  Google Scholar 

  50. Martínez-Hernández, G. B., Amodio, M. L., & Colelli, G. (2017). Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots. Innovative Food Science and Emerging Technologies, 41, 56–63.

    Article  CAS  Google Scholar 

  51. Molamohammadi, H., Pakkish, Z., Akhavan, H. R., & Saffari, V. R. (2020). Effect of salicylic acid incorporated chitosan coating on shelf life extension of fresh in-hull pistachio fruit. Food and Bioprocess Technology, 13(1), 121–131.

    CAS  Article  Google Scholar 

  52. Motwani, S. K., Chopra, S., Talegaonkar, S., Kohli, K., Ahmad, F. J., & Khar, R. K. (2008). Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. European Journal of Pharmaceutics and Biopharmaceutics, 68(3), 513–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Murugan, K., Anandaraj, K., & Al-Sohaibani, S. (2013). Antiaflatoxigenic food additive potential of Murraya koenigii: an in vitro and molecular interaction study. Food Research International, 52(1), 8–16.

    CAS  Article  Google Scholar 

  54. Oliveira, É. R., Fernandes, R. V., Botrel, D. A., Carmo, E. L., Borges, S. V., & Queiroz, F. (2018). Study of different wall matrix biopolymers on the properties of spray-dried pequi oil and on the stability of bioactive compounds. Food and Bioprocess Technology, 11(3), 660–679.

    CAS  Article  Google Scholar 

  55. Peretto, G., Du, W. X., Avena-Bustillos, R. J., Berrios, J. D. J., Sambo, P., & McHugh, T. H. (2017). Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food and Bioprocess Technology, 10(1), 165–174.

    CAS  Article  Google Scholar 

  56. Pinto, E., Pina-Vaz, C., Salgueiro, L., Gonçalves, M. J., Costa-de-Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A., & Martinez-de-Oliveira, J. (2006). Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 55(10), 1367–1373.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Porep, J. U., Mrugala, S., Nikfardjam, M. S. P., & Carle, R. (2015). Online determination of ergosterol in naturally contaminated grape mashes under industrial conditions at wineries. Food and Bioprocess Technology, 8(7), 1455–1464.

    CAS  Article  Google Scholar 

  58. Radhakrishnan, V. S., Mudiam, M. K. R., Kumar, M., Dwivedi, S. P., Singh, S. P., & Prasad, T. (2018). Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). International Journal of Nanomedicine, 13, 2647–2663.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Rajkumar, V., Gunasekaran, C., Dharmaraj, J., Chinnaraj, P., Paul, C. A., & Kanithachristy, I. (2020). Structural characterization of chitosan nanoparticle loaded with Piper nigrum essential oil for biological efficacy against the stored grain pest control. Pesticide Biochemistry and Physiology, 166, 104566.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. Ruberto, G., & Baratta, M. T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry, 69(2), 167–174.

    CAS  Article  Google Scholar 

  61. Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J. A., & Fernández-López, J. (2013). In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control, 30(2), 386–392.

    CAS  Article  Google Scholar 

  62. Shah, B. R., Li, Y., Jin, W., An, Y., He, L., Li, Z., Xu, W., & Li, B. (2016). Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocolloids, 52, 369–377.

    CAS  Article  Google Scholar 

  63. Shao, X., Cheng, S., Wang, H., Yu, D., & Mungai, C. (2013). The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. Journal of Applied Microbiology, 114(6), 1642–1649.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. Sharifimehr, S., Soltanizadeh, N., & Hossein Goli, S. A. (2019). Effects of edible coating containing nano-emulsion of Aloe vera and eugenol on the physicochemical properties of shrimp during cold storage. Journal of the Science of Food and Agriculture, 99(7), 3604–3615.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. Shetta, A., Kegere, J., & Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. International Journal of Biological Macromolecules, 126, 731–742.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. Singh, V. K., Das, S., Dwivedy, A. K., Rathore, R., & Dubey, N. K. (2019). Assessment of chemically characterized nanoencapuslated Ocimum sanctum essential oil against aflatoxigenic fungi contaminating herbal raw materials and its novel mode of action as methyglyoxal inhibitor. Postharvest Biology and Technology, 153, 87–95.

    CAS  Article  Google Scholar 

  67. Sun, Q., Shang, B., Wang, L., Lu, Z., & Liu, Y. (2016). Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Applied Microbiology and Biotechnology, 100(3), 1355–1364.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. Tian, J., Huang, B., Luo, X., Zeng, H., Ban, X., He, J., & Wang, Y. (2012). The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chemistry, 130(3), 520–527.

    CAS  Article  Google Scholar 

  69. Upadhyay, N., Singh, V. K., Dwivedy, A. K., Das, S., Chaudhari, A. K., & Dubey, N. K. (2018). Cistus ladanifer L. essential oil as a plant based preservative against molds infesting oil seeds, aflatoxin B1 secretion, oxidative deterioration and methylglyoxal biosynthesis. LWT- Food Science and Technology, 92, 395–403.

    CAS  Article  Google Scholar 

  70. Usha, T., Goyal, A. K., Lubna, S., Prashanth, H., Mohan, T. M., Pande, V., & Middha, S. K. (2014). Identification of anti-cancer targets of eco-friendly waste Punica granatum peel by dual reverse virtual screening and binding analysis. Asian Pacific Journal of Cancer Prevention, 15(23), 10345–10350.

    PubMed  Article  PubMed Central  Google Scholar 

  71. Viacava, G. E., Ayala-Zavala, J. F., González-Aguilar, G. A., & Ansorena, M. R. (2018). Effect of free and microencapsulated thyme essential oil on quality attributes of minimally processed lettuce. Postharvest Biology and Technology, 145, 125–133.

    CAS  Article  Google Scholar 

  72. Vieira, B. B., Mafra, J. F., da Rocha Bispo, A. S., Ferreira, M. A., de Lima Silva, F., Rodrigues, A. V. N., & Evangelista-Barreto, N. S. (2019). Combination of chitosan coating and clove essential oil reduces lipid oxidation and microbial growth in frozen stored tambaqui (Colossoma macropomum) fillets. LWT-Food Science and Technology, 116, 108546.

    CAS  Article  Google Scholar 

  73. Wang, Y., Xia, Y., Zhang, P., Ye, L., Wu, L., & He, S. (2017). Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger. Food and Bioprocess Technology, 10(3), 503–511.

    CAS  Article  Google Scholar 

  74. Weydert, C. J., & Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature Protocols, 5(1), 51–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96(2), 578–585.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. Yadav, S. K., Singla-Pareek, S. L., Ray, M., Reddy, M. K., & Sopory, S. K. (2005). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 337(1), 61–67.

    CAS  PubMed  Article  Google Scholar 

  77. Yang, H., Tong, J., Lee, C. W., Ha, S., Eom, S. H., & Im, Y. J. (2015). Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nature Communications, 6(1), 1–13.

    Google Scholar 

  78. Yili, A., Yimamu, H., Maksimov, V. V., Aisa, H. A., Veshkurova, O. N., & Salikhov, S. I. (2006). Chemical composition of essential oil from seeds of Anethum graveolens cultivated in China. Chemistry of Natural Compounds, 42(4), 491–492.

    CAS  Article  Google Scholar 

  79. Zhang, H., Li, X., & Kang, H. (2019). Chitosan coatings incorporated with free or nano-encapsulated Paulownia tomentosa essential oil to improve shelf-life of ready-to-cook pork chops. LWT-Food Science Technology, 116, 108580.

    CAS  Article  Google Scholar 

  80. Zheng, F., Zheng, W., Li, L., Pan, S., Liu, M., Zhang, W., Liu, H., & Zhu, C. (2017). Chitosan controls postharvest decay and elicits defense response in kiwifruit. Food and Bioprocess Technology, 10(11), 1937–1945.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Somenath Das is thankful to the Council of Scientific and Industrial Research (CSIR) [File No.: 09/013(0774)/2018-EMR-I], New Delhi, India, for the financial support. The authors wish to thank the head and coordinator CAS in Botany, DST-FIST, DST-PURSE, ISLS, and CIFC-IIT, Banaras Hindu University (BHU) for laboratory facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nawal Kishore Dubey.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, S., Singh, V.K., Dwivedy, A.K. et al. Anethum graveolens Essential Oil Encapsulation in Chitosan Nanomatrix: Investigations on In Vitro Release Behavior, Organoleptic Attributes, and Efficacy as Potential Delivery Vehicles Against Biodeterioration of Rice (Oryza sativa L.). Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02589-z

Download citation

Keywords

  • Anethum graveolens essential oil
  • Nanoemulsion
  • Antimicrobial
  • Aflatoxin B1
  • Molecular docking