Electroencapsulation of Trans-resveratrol in Nanoparticles Composed of Silk Fibroin and Soluble Eggshell Membrane Protein

Abstract

The beneficial effects of trans-resveratrol on health are widely accepted. However, when exposed to heat and UV light, the degradation of trans-resveratrol to less active form cis-resveratrol limits its use in industrial applications. Due to this reason, it is crucial to preserve the stability of trans-resveratrol by using carrier systems. This study aimed to encapsulate the trans-resveratrol in core/shell nanoparticles composed of eggshell membrane proteins and silk fibroin, respectively, using a coaxial electrospraying technique to preserve its stability. The size of the nanoparticles ranged from 8.2 to 254 nm. Keeping the encapsulation yield at the maximum level (96.9%), electroencapsulation process parameters which minimize the average particle diameter (23.8 nm) were found to be A (silk fibroin concentration) = 30.7 mg/ml, B (ratio of flow rates) = 0.72, C (applied voltage) = 18.8 kV, and D (distance) = 12.2 cm. Encapsulation efficiency varied between 40.05 and 96.41%. Detection of antioxidant capacity of released trans-resveratrol suggested that nanoparticles could be a suitable delivery system for sustained release of trans-resveratrol with preserved thermal and UV photostability. Central composite design (CCD) and the response surface methodology (RSM) were successfully used to optimize the electroencapsulation process parameters for the preparation of trans-resveratrol loaded core/shell nanoparticles. It was found that these parameters seemed to be varied depending on the response required. Therefore, an optimum process should be investigated to obtain desired responses such as high encapsulation yield, high encapsulation efficiency, and small average particle size while preserving the thermal and UV stabilities at reasonable levels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ajisawa, A. (1997). Dissolution aqueous of silk fibroin with calcium chloride/ethanol solution. The Journal of Sericultural Science of Japan, 67(2), 91–94.

    Google Scholar 

  2. Bakhshi, P. K., Nangrejo, M. R., Stride, E., & Edirisinghe, M. (2013). Application of electrohydrodynamic technology for folic acid encapsulation. Food and Bioprocess Technology, 6(7), 1837–1846.

    CAS  Google Scholar 

  3. Baspinar, Y., Üstündas, M., Bayraktar, O., & Sezgin, C. (2018). Curcumin and piperine loaded zein-chitosan nanoparticles: development and in-vitro characterisation. Saudi Pharmaceutical Journal, 26(3), 323–334.

    PubMed  PubMed Central  Google Scholar 

  4. Bayçin, D., Altiok, E., Ülkü, S., & Bayraktar, O. (2007). Adsorption of olive leaf (Olea europaea L.) antioxidants on silk fibroin. Journal of Agricultural and Food Chemistry, 55(4), 1227–1236.

    PubMed  Google Scholar 

  5. Bayraktar, O., Erdogan, I., Köse, M. D., & Kalmaz, G. (2017). Nanocarriers for Plant-Derived Natural Compounds. In Nanostructures for Antimicrobial Therapy: Nanostructures in Therapeutic Medicine Series, (pp. 395–412). Amsterdam, Netherlands: Elsevier.

  6. Bitencourt, J., Mendes, E., Riekes, M. K., Matoso De Oliveira, V., Domingos Michel, M., Stulzer, H. K., et al. (2012). PHBV/PCL microparticles for controlled release of resveratrol: physicochemical characterization, antioxidant potential, and effect on hemolysis of human erythrocytes. The Scientific World Journal, 2012, 13.

    Google Scholar 

  7. Celli, G. B., Ghanem, A., & Brooks, M. S. L. (2015). Bioactive encapsulated powders for functional foods—a review of methods and current limitations. Food and Bioprocess Technology, 8(9), 1825–1837.

    CAS  Google Scholar 

  8. de Vries, K., Strydom, M., & Steenkamp, V. (2018). Bioavailability of resveratrol: possibilities for enhancement. Journal of Herbal Medicine, 11, 71–77.

    Google Scholar 

  9. Delvallée, A., Feltin, N., Ducourtieux, S., Trabelsi, M., & Hochepied, J.-. F. (2013). Comparison of nanoparticle diameter measurements by Atomic Force Microscopy and Scanning Electron Microscopy, 06007, 06007. 16 the International Congress of Metrology. https://cfmetrologie.edpsciences.org/articles/metrology/pdf/2013/01/metrology_metr2013_06007.pdf. Accessed 31 Dec 2020.

  10. Eaton, P., Quaresma, P., Soares, C., Neves, C., de Almeida, M. P., Pereira, E., & West, P. (2017). A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy, 182, 179–190.

    CAS  PubMed  Google Scholar 

  11. Fernández-Mar, M. I., Mateos, R., García-Parrilla, M. C., Puertas, B., & Cantos-Villar, E. (2012). Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: a review. Food Chemistry, 130(4), 797–813.

    Google Scholar 

  12. Ferreira, S. L. C., Bruns, R. E., da Silva, E. G. P., dos Santos, W. N. L., Quintella, C. M., David, J. M., de Andrade, J. B., Breitkreitz, M. C., Jardim, I. C. S. F., & Neto, B. B. (2007). Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatography A, 1158(1–2), 2–14.

    CAS  PubMed  Google Scholar 

  13. Fu, N., You, Y. J., Quek, S. Y., Wu, W. D., & Chen, X. D. (2020). Interplaying effects of wall and core materials on the property and functionality of microparticles for co-encapsulation of vitamin E with coenzyme Q10. Food and Bioprocess Technology, 13(4), 705–721.

    CAS  Google Scholar 

  14. He, C., Hu, Y., Yin, L., Tang, C., & Yin, C. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31(13), 3657–3666.

    CAS  PubMed  Google Scholar 

  15. Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 2). Tropical Journal of Pharmaceutical Research, 12(2), 255–264.

    Google Scholar 

  16. Huang, X., Dai, Y., Cai, J., Zhong, N., Xiao, H., McClements, D. J., & Hu, K. (2017). Resveratrol encapsulation in core-shell biopolymer nanoparticles: impact on antioxidant and anticancer activities. Food Hydrocolloids, 64, 157–165.

    CAS  Google Scholar 

  17. Huang, X., Liu, Y., Zou, Y., Liang, X., Peng, Y., McClements, D. J., & Hu, K. (2019). Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocolloids, 93, 261–269.

    CAS  Google Scholar 

  18. Jayan, H., Maria Leena, M., Sivakama Sundari, S. K., Moses, J. A., & Anandharamakrishnan, C. (2019). Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. Journal of Functional Foods, 57, 417–424.

    CAS  Google Scholar 

  19. Jeong, H., Samdani, K. J., Yoo, D. H., Lee, D. W., Kim, N. H., Yoo, I. S., & Lee, J. H. (2016). Resveratrol cross-linked chitosan loaded with phospholipid for controlled release and antioxidant activity. International Journal of Biological Macromolecules, 93(Pt A), 757–766.

    CAS  PubMed  Google Scholar 

  20. Köse, M. D., & Bayraktar, O. (2016). Encapsulation of lycopene using electrospraying method. Biointerface Research in Applied Chemistry, 6(1), 1019–1025.

    Google Scholar 

  21. Köse, M. D., Baspinar, Y., & Bayraktar, O. (2019). Electroencapsulation ( electrospraying & electrospinning) of active compounds for food applications. Current Pharmaceutical Design, 25, 1–8.

    Google Scholar 

  22. Kundu, J., Chung, Y. I., Kim, Y. H., Tae, G., & Kundu, S. C. (2010). Silk fibroin nanoparticles for cellular uptake and control release. International Journal of Pharmaceutics, 388(1–2), 242–250.

    CAS  PubMed  Google Scholar 

  23. Langcake, P., & Pryce, R. J. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9(1), 77–86.

    CAS  Google Scholar 

  24. Lee, M.-C., & Huang, Y.-C. (2019). Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. International Journal of Biological Macromolecules, 131, 949–958.

    CAS  PubMed  Google Scholar 

  25. Lee, K. G., Kweon, H. Y., Yeo, J. H., Woo, S. O., Han, S. M., & Kim, J. H. (2011). Characterization of tyrosine-rich Antheraea pernyi silk fibroin hydrolysate. International Journal of Biological Macromolecules, 48(1), 223–226.

    CAS  PubMed  Google Scholar 

  26. Mainet, L. C. H., Cabrera, L. P., Rodriguez, E., Cruz, A. F., Santana, G., Menchaca, J. L., & Pérez-Tijerina, E. (2012). TiN nanoparticles: small size-selected fabrication and their quantum size effect. Nanoscale Research Letters, 7(1), 1–22.

    Google Scholar 

  27. Makris, D. P. (2018). Green extraction processes for the efficient recovery of bioactive polyphenols from wine industry solid wastes – Recent progress. Current Opinion in Green and Sustainable Chemistry, 13, 50–55.

    Google Scholar 

  28. Marelli, B., Brenckle, M. A., Kaplan, D. L., & Omenetto, F. G. (2016). Silk fibroin as edible coating for perishable food preservation. Scientific Reports, 6(May), 1–11.

    Google Scholar 

  29. Montalbán, M., Coburn, J., Lozano-Pérez, A., Cenis, J., Víllora, G., & Kaplan, D. (2018). Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials, 8(2), 126.

    PubMed Central  Google Scholar 

  30. Mottaghitalab, F., Farokhi, M., Shokrgozar, M. A., Atyabi, F., & Hosseinkhani, H. (2015). Silk fibroin nanoparticle as a novel drug delivery system. Journal of Controlled Release, 206, 161–176.

    CAS  PubMed  Google Scholar 

  31. Myers, H. R., Montgomery, C. D., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments (4th ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.

  32. Niesen, D. B. (2017). Isolation, synthesis, and metabolism of polyphenols: Stilbenoids, gallotannins and ellagitannins.

    Google Scholar 

  33. Park, S., Choi, K. S., Lee, D., Kim, D., Lim, K. T., Lee, K. H., Seonwoo, H., & Kim, J. (2016). Eggshell membrane: Review and impact on engineering. Biosystems Engineering, 151, 446–463.

    Google Scholar 

  34. Peng, H., Xiong, H., Li, J., Xie, M., Liu, Y., Bai, C., & Chen, L. (2010). Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chemistry, 121(1), 23–28.

    CAS  Google Scholar 

  35. Rajkhowa, R., Gil, E. S., Kluge, J., Numata, K., Wang, L., Wang, X., & Kaplan, D. L. (2010). Reinforcing silk scaffolds with silk particles. Macromolecular Bioscience, 10(6), 599–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rajurkar, N., Hande, S., & e. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73(2), 146–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237.

    CAS  PubMed  Google Scholar 

  38. Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 339(8808), 1523–1526.

    CAS  Google Scholar 

  39. Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2019). Spray drying encapsulation of elderberry extract and evaluating the release and stability of phenolic compounds in encapsulated powders. Food and Bioprocess Technology, 12(8), 1381–1394.

    CAS  Google Scholar 

  40. Ruff, K. J., DeVore, D. P., Leu, M. D., & Robinson, M. A. (2009). Eggshell membrane: a possible new natural therapeutic for joint and connective tissue disorders. Results from two open-label human clinical studies. Clinical Interventions in Aging, 4, 235–240.

    PubMed  PubMed Central  Google Scholar 

  41. Sah, M. K., & Rath, S. N. (2016). Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Materials Science and Engineering C, 67, 807–821.

    CAS  PubMed  Google Scholar 

  42. Seethu, B. G., Pushpadass, H. A., Emerald, F. M. E., Nath, B. S., Naik, N. L., & Subramanian, K. S. (2020). Electrohydrodynamic encapsulation of resveratrol using food-grade nanofibres: process optimization, characterization and fortification. Food and Bioprocess Technology, 13(2), 341–354.

    CAS  Google Scholar 

  43. Shi, P., & Goh, J. C. H. (2011). Release and cellular acceptance of multiple drugs loaded silk fibroin particles. International Journal of Pharmaceutics, 420(2), 282–289.

    CAS  PubMed  Google Scholar 

  44. Siemann, E. H., & Creasy, L. (1992). Concentration of the phytoalexin resveratrol in wine. American Journal of Enology and Viticulture, 43, 49–52.

    CAS  Google Scholar 

  45. Simmons, J. E., & Gennings, C. (1996). Experimental designs, statistics and interpretation. Food and Chemical Toxicology, 34(11–12), 1169–1171.

    CAS  PubMed  Google Scholar 

  46. Sotheeswaran, S., & Pasupathy, V. (1993). Distribution of resveratrol oligomers in plants. Phytochemistry, 32(5), 1083–1092.

    CAS  Google Scholar 

  47. Trela, B. C., & Waterhouse, A. L. (1996). Resveratrol: isomeric molar absorptivities and stability. Journal of Agricultural and Food Chemistry, 44(5), 1253–1257.

    CAS  Google Scholar 

  48. Walle, T. (2011). Bioavailability of resveratrol. Annals of the New York Academy of Sciences, 1215(1), 9–15.

    CAS  PubMed  Google Scholar 

  49. Wu, M.-H., Zhu, L., Zhou, Z.-Z., & Zhang, Y.-Q. (2013). Coimmobilization of naringinases on silk fibroin nanoparticles and its application in food packaging. Journal of Nanoparticles, 2013, 1–5.

    Google Scholar 

  50. Yi, F., Yu, J., Guo, Z. X., Zhang, L. X., & Li, Q. (2003). Natural bioactive material: a preparation of soluble eggshell membrane protein. Macromolecular Bioscience, 3(5), 234–237.

    CAS  Google Scholar 

  51. Yi, F., Guo, Z. X., Zhang, L. X., Yu, J., & Li, Q. (2004). Soluble eggshell membrane protein: preparation, characterization and biocompatibility. Biomaterials, 25(19), 4591–4599.

    CAS  PubMed  Google Scholar 

  52. Yi, F., Lu, J. W., Guo, Z. X., & Yu, J. (2006). Mechanical properties and biocompatibility of soluble eggshell membrane protein/poly(vinyl alcohol) blend films. Journal of Biomaterials Science, Polymer Edition, 17(9), 1015–1024.

    CAS  Google Scholar 

  53. Yukseloglu, S. M., Sokmen, N., & Canoglu, S. (2015). Biomaterial applications of silk fibroin electrospun nanofibres. Microelectronic Engineering, 146, 43–47.

    CAS  Google Scholar 

  54. Zhang, J., Mi, Q., & Shen, M. (2012). Resveratrol binding to collagen and its biological implication. Food Chemistry, 131(3), 879–884.

    CAS  Google Scholar 

Download references

Funding

This research was supported by the Scientific and Technological Research Council of Turkey (TUBİTAK) under grant number 116M566.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oguz Bayraktar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 991 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, O., Yahsi, Y. & Köse, M.D. Electroencapsulation of Trans-resveratrol in Nanoparticles Composed of Silk Fibroin and Soluble Eggshell Membrane Protein. Food Bioprocess Technol 14, 334–351 (2021). https://doi.org/10.1007/s11947-020-02576-w

Download citation

Keywords

  • Resveratrol
  • Eggshell membrane
  • Silk fibroin
  • Electroencapsulation
  • Nanoparticle