Combined Osmotic and Air Dehydration for the Production of Shelf-Stable White Cheese

Abstract

The research targeted on the production of an innovative shelf-stable cheese of high quality, through the combinatory effect of osmotic dehydration (OD) as pretreatment and conventional air-drying. The optimum OD processing conditions (process time/temperature, concentration of osmotic solution, food to OD agent ratio) were determined through a kinetic study of the effect of OD parameters on the water activity (aw) and water/solid transport phenomena, organoleptic and quality characteristics of the white cheese in cubes. Through Fick’s second law for mass transfer, water and solid diffusion coefficients were determined. Taking into consideration the aw, the quality, and organoleptic characteristics of the final product, the optimum OD conditions were selected as 15 °C process temperature, food to osmotic agent ratio 1:4 (w/w), concentration of osmotic agent 65% to glycerol, and treatment time 30 min. The final moisture and aw of the OD-treated product were calculated as 40% and 0.88, respectively. The time of OD-pretreated product for air-drying at 40, 55, and 67 °C to 5% residual moisture was reduced by 35, 51, and 65% respectively. The selected air-drying conditions were 67 °C for 4 h. Quality parameters of the final white cheese product were studied during its storage at 15–40 °C, and the shelf life was estimated as 6 months at ambient temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Achanta, S., & Okos, M. R. (1996). Predicting the quality of dehydrated foods and biopolymers. Research needs and opportunities. Journal of Drying Technology, 14(6), 1329–1368.

    CAS  Article  Google Scholar 

  2. Ahmed, I., Qazi, I. M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies, 34, 29–43.

    CAS  Article  Google Scholar 

  3. Andreou, V., Tsironi, T., Dermesonlouoglou, E., Katsaros, G., & Taoukis, P. (2018). Combinatory effect of osmotic and high pressure processing on shelf life extension of animal origin products-application to chilled chicken breast fillets. Journal of Food Packaging and Shelf Life, 15, 43–51.

    Article  Google Scholar 

  4. Anifantakis, E. M., & Moatsou, G. (2006). Feta and other Balkan cheeses. Production methods, manufacturing stages and properties. In A. Y. Tamime (Ed.), Brined Cheeses Manual (pp. 43–76). Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  5. Antonio, G. C., Azoubel, P. M., Alves, D. G., El-Aouar, A. A., & Murr, F. E. X. (2004). Osmotic dehydration of papaya (carica papaya l.): influence of process variables (pp. 1998–2004). Sao Paulo: Proceedings of the 14th International Drying Symposium.

    Google Scholar 

  6. Castell-Palou, A., & Simal, S. (2011). Heat pump drying kinetics of a pressed type cheese. LWT- Food Science and Technology, 44, 489–494.

    CAS  Article  Google Scholar 

  7. Castell-Palou, A., Rosselló, C., Femenia, A., Bon, J., & Simal, S. (2011). Moisture profiles in cheese drying determined by TD-NMR: Mathematical modeling of mass transfer. Journal of Food Engineering, 104(4), 525–531.

    Article  Google Scholar 

  8. Crank, J. (1975). The mathematics of diffusion (2nd ed.). London: Clarendon Press-Oxford.

    Google Scholar 

  9. Dimakopoulou-Papazoglou, D., & Katsanidis, E. (2017). Effect of maltodextrin, sodium chloride, and liquid smoke on the mass transfer kinetics and storage stability of osmotically dehydrated beef meat. Journal of Food and Bioprocess Technology, 10(11), 2034–2045.

    CAS  Article  Google Scholar 

  10. Dermesonlouoglou, E., Andreou, V., Alexandrakis, Z., Katsaros, G., Giannakourou, M., & Taoukis, P. (2017). The hurdle effect of osmotic pretreatment and high-pressure cold pasteurisation on the shelf-life extension of fresh-cut tomatoes. International Journal of Food Science & Technology, 52(4), 916–926.

    CAS  Article  Google Scholar 

  11. Dermesonlouoglou, E., Chalkia, A., & Taoukis, P. (2018). Application of osmotic dehydration to improve the quality of dried goji berry. Journal of Food Engineering, 232, 36–43.

    CAS  Article  Google Scholar 

  12. Dermesonlouoglou, E. K., Angelikaki, F., Giannakourou, M. C., Katsaros, G. K., & Taoukis, P. S. (2019a). Minimally processed fresh-cut peach and apricot snacks of extended shelf-life by combined osmotic and high pressure processing. Journal of Food and Bioprocess Technology, 12(3), 371–386.

    CAS  Article  Google Scholar 

  13. Dermesonlouoglou, E. K., Pantelaiaki, K., Andreou, V., Katsaros, G. K., & Taoukis, P. S. (2019b). Osmotic pretreatment for producing novel dehydrated tomatoes and cucumbers. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.13968.

  14. Food Code. (2005). Recommendations of the United States public health service. Food and Drug Administration, National Technical Information Service Publication, PB2005-102200.

  15. Fucà, N., McMahon, D. J., Caccamo, M., Tuminello, L., La Terra, S., Manenti, M., & Licitra, G. (2012). Effect of brine composition and brining temperature on cheese physical properties in Ragusano cheese. Journal of Dairy Science, 95(1), 460–470.

    Article  PubMed Central  Google Scholar 

  16. Giannoglou, M., Karra, Z., Platakou, E., Katsaros, G., Moatsou, G., & Taoukis, P. (2016). Effect of high pressure treatment applied on starter culture or on semi-ripened cheese in the quality and ripening of cheese in brine. Journal of Innovative Food Science & Emerging Technologies, 38, 312–320.

    CAS  Article  Google Scholar 

  17. Igoshi, A., Sato, Y., Kameyama, K., & Murata, M. (2017). Galactose is the limiting factor for the browning or discoloration of cheese during storage. Journal of Nutritional Science and Vitaminology, 63(6), 412–418.

    CAS  Article  PubMed Central  Google Scholar 

  18. Ispir, A., & Toğrul, İ. T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Journal of Chemical Engineering Research and Design, 87, 166–180.

    CAS  Article  Google Scholar 

  19. Karathanos, V. T., Kostaropoulos, E., & Saravacos, G. D. (1995). Air drying of osmotically dehydrated fruits. Journal of Drying Technology, 13(5&7), 1503–1521.

    CAS  Article  Google Scholar 

  20. Leistner, L. (2000). Basic aspect of food preservation by hurdle technology. International Journal of Food Microbiology, 55(1–3), 181–186.

    CAS  Article  PubMed Central  Google Scholar 

  21. Lu, Y., & McMahon, D. J. (2015). Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese. Journal of Dairy Science, 98(1), 78–88.

    CAS  Article  PubMed Central  Google Scholar 

  22. Miraei Ashtiani, S. H., Salarikia, A., & Golzarian, M. R. (2017). Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Information Processing in Agriculture, 4(2), 128–139.

    Article  Google Scholar 

  23. Moreira, R., Chenlo, F., Torres, M. D., & Vazquez, G. (2007). Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT- Food Science and Technology, 40(9), 1507–1514.

    CAS  Article  Google Scholar 

  24. Nguyen, M. P., Ngo, T. T., & Le, T. D. (2019). Experimental and numerical investigation of transport phenomena and kinetics for convective shrimp drying. Case studied in thermal engineering, 14, 1000465.

    Google Scholar 

  25. Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: a review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618.

    Article  Google Scholar 

  26. Ozgen, F. (2015). Experimental investigation of drying characteristics of cornelian cherry fruits (Cornus mas L.). Journal of Heat and Mass Transfer, 51(3), 343–353.

    CAS  Article  Google Scholar 

  27. Panagiotou, N. M., Karathanos, V. T., & Maroulis, Z. (1999). Effect of osmotic agents on osmotic dehydration of fruits. Journal of Drying Technology, 17(1-2), 175–189.

    CAS  Article  Google Scholar 

  28. Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1), 7–18.

    CAS  Google Scholar 

  29. Pinho, A. R. C., Assis, F. R., Peres, A. P., Pintado, M. E., & Morais, A. M. M. B. (2017). Dehydration of cheese by hot air, microwave and freeze-drying. Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry, 18(4), 455–460.

    Google Scholar 

  30. Praveen Kumar, D. G., Hebbar, U., & Ramesh, M. N. (2006). Suitability of thin layer models for infrared–hot air-drying of onion slices. LWT- Food Science and Technology, 39(6), 700–705.

    Article  Google Scholar 

  31. Rahman, M. S., & Labuza, T. P. (2007). Water activity and food preservation. In M. S. Rahman (Ed.), In: Handbook of Food Preservation (2nd ed., pp. 447–476). Boca Raton: CRC Press.

    Google Scholar 

  32. Rahman, M. S. (2008). Dehydration and microstructure. In C. Ratti (Ed.), Advances in Food Dehydration (p. 97). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  33. Rastogi, N. K., & Raghavarao, K. (1997). Water and solute diffusion coefficients of carrot as a function of temperature and concentration during osmotic dehydration. Journal of Food Engineering, 34(4), 429–441.

    Article  Google Scholar 

  34. Rastogi, N. K., & Niranjan, K. (1998). Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. Journal of Food Engineering, 63, 508–511.

  35. Rastogi, N. K., Angersbach, A., & Knorr, D. (2000). Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydration. Journal of Food Engineering, 45(1), 25–31.

    Article  Google Scholar 

  36. Rastogi, N. K., Raghavarao, K. S. M. S., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends in Food Science and Technology, 13(2), 48–59.

    CAS  Article  Google Scholar 

  37. Rastogi, N. K., & Raghavarao, K. S. M. S. (2004). Mass transfer during osmotic dehydration of pineapple considering Fickian diffusion in cubical configuration. Lebensmittel-Wissenschaft + Technologie, 37, 43–47.

    CAS  Article  Google Scholar 

  38. Sacilik, K., Konuralp Elicin, A., & Unal, G. (2006). Drying kinetics of Uryani plum in a convective hot-air dryer. Journal of Food Engineering, 76, 362–368.

    Article  Google Scholar 

  39. Schär, W., & Bosset, J. O. (2002). Chemical and physico-chemical changes in processed cheese and ready-made fondue during storage. A review. Lebensmittel-Wissenschaft und Technologie, 35, 15–20.

    Article  Google Scholar 

  40. Tirado, D. F., González-Morelo, K. J., Puerta, M. J., Ahumada, O. Y., & Correa, D. A. (2018). Osmotic dehydration and hot-air drying of pineapple (Ananas comosus). International Journal of Engineering and Technology. https://doi.org/10.21817/ijet/2017/v9i6/170906112.

  41. Tortoe, C. (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4(6), 303–324.

    CAS  Google Scholar 

  42. Uribe, E., Miranda, M., Vega-Gálvez, A., Quispe, I., Clavería, R., & Di Scala, K. (2011). Mass transfer modelling during osmotic dehydration of jumbo squid (Dosidicus gigas): Influence of temperature on diffusion coefficients and kinetic parameters. Journal of Food and Bioprocess Technology, 4(2), 320–326.

    Article  Google Scholar 

  43. Veeramachaneni, K., Vladislavleva, K., Burland, M., Parcon, J., & O’Reilly, U. M. (2010). Evolutionary optimization of flavors. In J. Branke et al. (Eds.), GECCO ‘10: Proceedings of the 12th annual conference on genetic and evolutionary computation (pp. 1291–1298). Portland: ACM.

    Google Scholar 

  44. Verma, D., Kaushik, N., & Srinivasa Rao, P. (2014). Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) Finish-dried by dehumidified air drying. Journal of Food and Bioprocess Technology, 7(5), 1281–1297.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marianna Giannoglou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giannoglou, M., Koumandraki, H., Andreou, V. et al. Combined Osmotic and Air Dehydration for the Production of Shelf-Stable White Cheese. Food Bioprocess Technol (2020). https://doi.org/10.1007/s11947-020-02484-z

Download citation

Keywords

  • White cheese
  • Osmosis
  • Air-drying
  • Shelf-stable cheese