Studies on the Binding Interactions of Grass Carp (Ctenopharyngodon idella) Myosin with Chlorogenic Acid and Rosmarinic Acid

Abstract

There are many polyphenols used for the preservation of fish, but the interaction mechanism between polyphenols and fish protein is rarely reported. In the present study, the interactions between two kinds of polyphenols (chlorogenic acid (CGA) and rosmarinic acid (RA)) and the myosin of grass carp (Ctenopharyngodon idella) were explored using multi-spectroscopic techniques. Both CGA and RA were found to be involved in reducing the intrinsic fluorescence and surface hydrophobicity of myosin and increasing the UV absorption intensity. This indicates that interactions between CGA, RA, and myosin ultimately result in the formation of polyphenol-myosin complexes. The binding process of CGA and RA for the formation of the complex was spontaneous. The main binding forces between RA and myosin are hydrogen bonding and van der Waals forces, whereas hydrophobic interactions were observed between CGA and myosin. The results of circular dichroism (CD) showed that the presence of CGA and RA increased the content of myosin alpha-helix. CGA and RA caused myosin aggregation which reduced the corresponding solution dispersibility. CGA and RA protected the myosin sulfhydryl groups and reduced the degree of their oxidation. Furthermore, the complexes formed by the combination of myosin, CGA, and RA exhibited the strongest synergistic antioxidant properties than any one of them. The findings of the present study provide insights into our understanding of the mechanism of interactions between myosin and polyphenols which could provide information on the application of polyphenols in preserving aquatic products.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Azimi, O., Emami, Z., Salari, H., & Chamani, J. (2011). Probing the interaction of human serum albumin with norfloxacin in the presence of high-frequency electromagnetic fields: Fluorescence spectroscopy and circular dichroism investigations. Molecules., 16(12), 9792–9818.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cao, L., Su, S., Regenstein, J. M., Xiong, S., & Liu, R. (2015). Ca2+-Induced conformational changes of myosin from silver carp (Hypophthalmichthys molitrix) in gelation. Food Biophysics, 10(4), 447–455.

    Google Scholar 

  3. Cao, Q., Du, H., Huang, Y., Hu, Y., You, J., Liu, R., Xiong, S., & Manyande, A. (2019). The inhibitory effect of chlorogenic acid on lipid oxidation of grass carp (Ctenopharyngodon idellus) during chilled storage. Food and Bioprocess Technology., 12(12), 2050–2061.

    CAS  Google Scholar 

  4. Chen, R., Wang, J.-B., Zhang, X.-Q., Ren, J., & Zeng, C.-M. (2011). Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins. Archives of Biochemistry and Biophysics., 507(2), 343–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cui, Y., Liang, G., Hu, Y.-H., Shi, Y., Cai, Y.-X., Gao, H.-J., Chen, Q.-X., & Wang, Q. (2015). Alpha-substituted derivatives of cinnamaldehyde as tyrosinase inhibitors: Inhibitory mechanism and molecular analysis. Journal of Agricultural and Food Chemistry., 63(2), 716–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai, T., Chen, J., Li, Q., Li, P., Hu, P., Liu, C., & Li, T. (2018). Investigation the interaction between procyanidin dimer and α-amylase: Spectroscopic analyses and molecular docking simulation. International Journal of Biological Macromolecules., 113, 427–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dan, Q., Xiong, W., Liang, H., Wu, D., Zhan, F., Chen, Y., Ding, S., & Li, B. (2019). Characteristic of interaction mechanism between β-lactoglobulin and nobiletin: A multi-spectroscopic, thermodynamics methods and docking study. Food Research International., 120, 255–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Daskalova, A. (2019). Farmed fish welfare: Stress, post-mortem muscle metabolism, and stress-related meat quality changes. International Aquatic Research., 11(2), 113–124.

    Google Scholar 

  9. Fan, W., Chi, Y., & Zhang, S. (2008). The use of a tea polyphenol dip to extend the shelf life of silver carp (Hypophthalmicthys molitrix) during storage in ice. Food Chemistry., 108(1), 148–153.

    CAS  Google Scholar 

  10. Feng, X., Ng, V. K., Mikš-Krajnik, M., & Yang, H. (2017). Effects of fish gelatin and tea polyphenol coating on the spoilage and degradation of myofibril in fish fillet during cold storage. Food and Bioprocess Technology., 10(1), 89–102.

    CAS  Google Scholar 

  11. Hasni, I., Bourassa, P., Hamdani, S., Samson, G., Carpentier, R., & Tajmir-Riahi, H.-A. (2011). Interaction of milk α- and β-caseins with tea polyphenols. Food Chemistry., 126(2), 630–639.

    CAS  Google Scholar 

  12. Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2016). Effect of fish gelatin coating enriched with oregano essential oil on the quality of refrigerated rainbow trout fillet. Journal of Aquatic Food Product Technology., 25(6), 835–842.

    CAS  Google Scholar 

  13. Ishii, T., Ishikawa, M., Miyoshi, N., Yasunaga, M., Akagawa, M., Uchida, K., & Nakamura, Y. (2009). Catechol type polyphenol is a potential modifier of protein sulfhydryls: Development and application of a new probe for understanding the dietary polyphenol actions. Chemical Research in Toxicology., 22(10), 1689–1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jia, J., Gao, X., Hao, M., & Tang, L. (2017). Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chemistry., 228, 143–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, L., & Wu, S. (2018). Pullulan suppresses the denaturation of myofibrillar protein of grass carp (Ctenopharyngodon idella) during frozen storage. International Journal of Biological Macromolecules., 112, 1171–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, J., Zhang, Z., Zhao, J., & Liu, Y. (2018). The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests. Food Chemistry., 268, 334–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jöbstl, E., O’Connell, J., Fairclough, J. P. A., & Williamson, M. P. (2004). Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules., 5(3), 942–949.

    PubMed  PubMed Central  Google Scholar 

  18. Joye, I. J., Davidov-Pardo, G., Ludescher, R. D., & McClements, D. J. (2015). Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chemistry., 185, 261–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang, J., Liu, Y., Xie, M.-X., Li, S., Jiang, M., & Wang, Y.-D. (2004). Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochimica et Biophysica Acta (BBA) - General Subjects., 1674(2), 205–214.

    CAS  Google Scholar 

  20. Karaca, A. C., Low, N., & Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International., 44(9), 2742–2750.

    CAS  Google Scholar 

  21. Kominz, D. R., Hough, A., Symonds, P., & Laki, K. (1954). The amino acid composition of actin, myosin, tropomyosin and the meromyosins. Archives of Biochemistry and Biophysics., 50(1), 148–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lakowicz, J. (1999). Principles of fluorescence spectroscopy (2nd ed). New York: Kluwer/Plenum. https://doi.org/10.1007/978-0-387-46312-4.

    Google Scholar 

  23. Lange, R., & Balny, C. (2002). UV-visible derivative spectroscopy under high pressure. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology., 1595(1), 80–93.

    CAS  Google Scholar 

  24. Li, Y., Lim, L. T., & Kakuda, Y. (2009). Electrospun zein fibers as carriers to stabilize (-)-epigallocatechin gallate. Journal of Food Science, 74(3), C233–C240.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, T., Hu, P., Dai, T., Li, P., Ye, X., Chen, J., & Liu, C. (2018). Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 201, 197–206.

    CAS  Google Scholar 

  26. Liu, R., Zhao, S.-M., Xie, B.-J., & Xiong, S.-B. (2011). Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties. Food Hydrocolloids, 25(5), 898–906.

    CAS  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry., 193(1), 265–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Luan, L., Fu, S., Yuan, C., Ishimura, G., Chen, S., Chen, J., & Hu, Y. (2017). Combined effect of superchilling and tea polyphenols on the preservation quality of hairtail (Trichiurus haumela). International Journal of Food Properties, 20(sup1), S992–S1001.

    CAS  Google Scholar 

  29. Mohammadian, M., & Madadlou, A. (2016). Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution. Food Hydrocolloids, 52, 221–230.

    CAS  Google Scholar 

  30. Ojagh, S. M., Rezaei, M., & Razavi, S. H. (2014). Improvement of the storage quality of frozen rainbow trout by chitosan coating incorporated with cinnamon oil. Journal of Aquatic Food Product Technology., 23(2), 146–154.

    CAS  Google Scholar 

  31. Panya, A., Kittipongpittaya, K., Laguerre, M., Bayrasy, C., Lecomte, J., Villeneuve, P., McClements, D. J., & Decker, E. A. (2012). Interactions between α-tocopherol and rosmarinic acid and its alkyl esters in emulsions: Synergistic, additive, or antagonistic effect? Journal of Agricultural and Food Chemistry., 60(41), 10320–10330.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Park, J. W., & Lanier, T. C. (1989). Scanning calorimetric behavior of tilapia myosin and actin due to processing of muscle and protein purification. Journal of Food Science., 54(1), 49–51.

    CAS  Google Scholar 

  33. Peng, X., Kong, B., Xia, X., & Liu, Q. (2010). Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. International Dairy Journal., 20(5), 360–365.

    CAS  Google Scholar 

  34. Peng, X., Wang, X., Qi, W., Su, R., & He, Z. (2016). Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chemistry., 192, 178–187.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng, X., Wang, Y., Xing, J., Wang, R., Shi, X., & Guo, S. (2017). Characterization of particles in soymilks prepared by blanching soybeans and traditional method: A comparative study focusing on lipid-protein interaction. Food Hydrocolloids, 63, 1–7.

    CAS  Google Scholar 

  36. Qiu, X., Chen, S., Liu, G., & Yang, Q. (2014). Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4°C by chitosan coating incorporated with citric acid or licorice extract. Food Chemistry., 162, 156–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reesha, K. V., Panda, S. K., Bindu, J., & Varghese, T. O. (2015). Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. International Journal of Biological Macromolecules., 79, 934–942.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ren, C., Xiong, W., Li, J., & Li, B. (2019). Comparison of binding interactions of cyanidin-3-O-glucoside to β-conglycinin and glycinin using multi-spectroscopic and thermodynamic methods. Food Hydrocolloids, 92, 155–162.

    CAS  Google Scholar 

  39. Rodríguez, A., Cruz, J. M., Paseiro-Losada, P., & Aubourg, S. P. (2012). Effect of a polyphenol–vacuum packaging on lipid deterioration during an 18-month frozen storage of coho salmon (Oncorhynchus kisutch). Food and Bioprocess Technology., 5(6), 2602–2611.

    Google Scholar 

  40. Rojas, F. S., Ojeda, C. B., & Pavon, J. M. C. (1988). Derivative ultraviolet—Visible region absorption spectrophotometry and its analytical applications. Talanta., 35(10), 753–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry., 20(11), 3096–3102.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Saleem. R., & Ahmad, R. (2016). Effect of low frequency ultrasonication on biochemical and structural properties of chicken actomyosin. Food Chemistry. 205, 43–51.

  43. Shao, P., Zhang, J., Fang, Z., & Sun, P. (2014). Complexing of chlorogenic acid with β-cyclodextrins: Inclusion effects, antioxidative properties and potential application in grape juice. Food Hydrocolloids, 41, 132–139.

    CAS  Google Scholar 

  44. Siebert, K. J., Troukhanova, N. V., & Lynn, P. Y. (1996). Nature of polyphenol−protein interactions. Journal of Agricultural and Food Chemistry., 44(1), 80–85.

    CAS  Google Scholar 

  45. Silva, C. E. L., Hudson, E. A., Agudelo, Á. J. P., da Silva, L. H. M., Pinto, M. S., do Carmo Hespanhol, M., Barros, F. A. R., & dos Santos Pires, A. C. (2018). β-Carotene and milk protein complexation: A thermodynamic approach and a photo stabilization study. Food and Bioprocess Technology., 11(3), 610–620.

    CAS  Google Scholar 

  46. Stănciuc, N., Turturică, M., Oancea, A. M., Barbu, V., Ioniţă, E., Aprodu, I., & Râpeanu, G. (2017). Microencapsulation of anthocyanins from grape skins by whey protein isolates and different polymers. Food and Bioprocess Technology., 10(9), 1715–1726.

    Google Scholar 

  47. Sui, X., Sun, H., Qi, B., Zhang, M., Li, Y., & Jiang, L. (2018). Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions. Food Chemistry., 245, 871–878.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun, C., Yang, J., Liu, F., Yang, W., Yuan, F., & Gao, Y. (2016). Effects of dynamic high-pressure microfluidization treatment and the presence of quercetagetin on the physical, structural, thermal, and morphological characteristics of zein nanoparticles. Food and Bioprocess Technology., 9(2), 320–330.

    CAS  Google Scholar 

  49. Sun, L., Sun, J., Liu, D., Fu, M., Yang, X., & Guo, Y. (2018). The preservative effects of chitosan film incorporated with thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) fillets during cold storage: Correlation between the preservative effects and the active properties of the film. Food Packaging and Shelf Life., 17, 1–10.

    Google Scholar 

  50. Tang, L., Zuo, H., & Shu, L. (2014). Comparison of the interaction between three anthocyanins and human serum albumins by spectroscopy. Journal of Luminescence., 153, 54–63.

    CAS  Google Scholar 

  51. Wang, T., Li, Z., Yuan, F., Lin, H., & Pavase, T. R. (2017). Effects of brown seaweed polyphenols, alpha-tocopherol, and ascorbic acid on protein oxidation and textural properties of fish mince (Pagrosomus major) during frozen storage. Journal of the Science of Food and Agriculture, 97(4), 1102–1107.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, G., Liu, M., Cao, L., Yongsawatdigul, J., Xiong, S., & Liu, R. (2018). Effects of different NaCl concentrations on self-assembly of silver carp myosin. Food Bioscience, 24, 1–8.

    Google Scholar 

  53. Whitmore, L., & Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers., 89(5), 392–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, C., Fu, S., Xiang, Y., Yuan, C., Hu, Y., Chen, S., Liu, D., & Ye, X. (2016). Effect of chitosan gallate coating on the quality maintenance of refrigerated (4 °C) silver pomfret (Pampus argentus). Food and Bioprocess Technology., 9(11), 1835–1843.

    CAS  Google Scholar 

  55. Wu, M., Li, C., Du, W., Yang, X., & Liu, Z. (2018). Preparation of chitosan/rosemary extract nanoparticles and their application for inhibiting lipid oxidation in grass carp (Ctenopharyngodon idellus) during cold storage. Journal of Aquatic Food Product Technology., 27(6), 759–770.

    CAS  Google Scholar 

  56. Xu, X., Liu, W., Zhong, J., Luo, L., Liu, C., Luo, S., & Chen, L. (2015). Binding interaction between rice glutelin and amylose: Hydrophobic interaction and conformational changes. International Journal of Biological Macromolecules., 81, 942–950.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, H., Lu, Y., Zhang, T., Liu, K., Liu, L., He, Z., Xu, B., & Wu, X. (2019). Characterization of binding interactions of anthraquinones and bovine β-lactoglobulin. Food Chemistry., 281, 28–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan, X., Liu, B., Chong, B., & Cao, S. (2013). Interaction of Cefpiramide sodium with bovine hemoglobin and effect of the coexistent metal ion on the protein-drug association. Journal of Luminescence., 142, 155–162.

    CAS  Google Scholar 

  59. Yang, J. T., Wu, C.-S. C., & Martinez, H. M. (1986). [11] Calculation of protein conformation from circular dichroism. In Methods in enzymology (Vol. 130, pp. 208–269). Academic press.

  60. Yongsawatdigul, J., & Sinsuwan, S. (2007). Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting. Food Hydrocolloids, 21(3), 359–367.

    CAS  Google Scholar 

  61. Yu, D., Jiang, Q., Xu, Y., & Xia, W. (2017). The shelf life extension of refrigerated grass carp (Ctenopharyngodon idellus) fillets by chitosan coating combined with glycerol monolaurate. International Journal of Biological Macromolecules., 101, 448–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, D., Regenstein, J. M., & Xia, W. (2018). Bio-based edible coatings for the preservation of fishery products: A review. Critical Reviews in Food Science and Nutrition., 59(15), 2481–2493.

    PubMed  PubMed Central  Google Scholar 

  63. Yuan, J.-L., Lv, Z., Liu, Z.-G., Hu, Z., & Zou, G.-L. (2007). Study on interaction between apigenin and human serum albumin by spectroscopy and molecular modeling. Journal of Photochemistry and Photobiology A: Chemistry., 191(2), 104–113.

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Nature Science Foundation of China (No. 31772047), the Fundamental Research Funds for the Central Universities (No. 2662019PY031), Chinese Ministry of Science and Technology (2019YFC1606003), and the China Agriculture Research System (CARS-45-27).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hongying Du or Qilin Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Du, H., Kamal, G.M. et al. Studies on the Binding Interactions of Grass Carp (Ctenopharyngodon idella) Myosin with Chlorogenic Acid and Rosmarinic Acid. Food Bioprocess Technol (2020). https://doi.org/10.1007/s11947-020-02483-0

Download citation

Keywords

  • Grass carp
  • Myosin
  • Chlorogenic acid
  • Rosmarinic acid
  • Spectroscopic techniques
  • Fluorescence