Nanocellulose for Stabilization of Pickering Emulsions and Delivery of Nutraceuticals and Its Interfacial Adsorption Mechanism

Abstract

Nanocellulose proved to be an efficient material for the preparation of Pickering emulsions with potential for replacing synthetic surfactants, which show toxic effects in the gastrointestinal (GI) tract. Its self-assembling capability, tensile strength, and stiffness make it an efficient material for stabilization of emulsions. Nanoemulsion systems stabilized with nanocellulose (NC) can be prepared for delivery of nutraceuticals with therapeutic utilities and achieving their controlled release in the GI tract. Stable emulsions can be produced even when the surface of droplets is covered by a low amount of NCs. Hydrophobic modification of NCs enhances their dispersibility in nonpolar solvents, and modification with cationic surfactants enables the production of emulsions with transitional phase inversion and production of water-in-oil emulsions. Grafting NCs with responsive polymers provides the opportunity of producing smart emulsifiers for delivery of nutraceuticals. The adsorption of NCs at the interfaces is influenced by their surface chemistry and charge and the emulsion conditions such as pH, temperature, and ionic strength. Their adsorption can be explained based on particle diffusion to the interface and charge-induced kinetic adsorption barrier. Modification of NCs allows achieving faster adsorption and higher surface pressure and surface coverage. Considering the economic and environmental benefits of NCs in replacing nonrenewable materials and their potential in producing stable Pickering emulsions, this review aims to highlight recent studies on the application of NCs for stabilization of Pickering emulsions and delivery of nutraceuticals, and discusses their interfacial adsorption mechanism, influenced by processing conditions, providing insights to food and drug manufacturers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aaen, R., Brodin, F. W., Simon, S., Heggset, E. B., & Syverud, K. (2019). Oil-in-water emulsions stabilized by cellulose nanofibrils-the effects of ionic strength and pH. Nanomaterials, 9(2). https://doi.org/10.3390/nano9020259.

  2. Abd Hamid, S. B., Chowdhury, Z. Z., Karim, M. Z., & Ali, M. E. (2016). Catalytic isolation and physicochemical properties of nanocrystalline cellulose (NCC) using HCl-FeCl3 system combined with ultrasonication. BioResources, 11(2). https://doi.org/10.15376/biores.11.2.3840-3855.

  3. Aben, S., Bonnke, N., Gutschner, U., & Lagaly, G. (1998). Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides. Colloid & Polymer Science, 276(8), 730–737. https://doi.org/10.1007/s003960050303.

    Article  Google Scholar 

  4. Abitbol, T., & Cranston, E. D. (2014). Chiral nematic self-assembly of cellulose nanocrystals in suspensions and solid films. In K. Oksman, A. P. Mathew, A. Bismark, O. Rojas, & M. Sain (Eds.), Handbook of green materials: processing technologies, properties and applications. Materials and energy: Volume 5: World Scientific.

  5. Adamczyk, Z. (2000). Kinetics of diffusion-controlled adsorption of colloid particles and proteins. Journal of Colloid and Interface Science, 229(2), 477–489. https://doi.org/10.1006/jcis.2000.6993.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Adamczyk, Z. (2002a). Adsorption of particles: theory. In A. T. Hubbard (Ed.), Encyclopedia of surface and colloid science. Boca Raton: CRC.

    Google Scholar 

  7. Adamczyk, Z. (2002b). Irreversible adsorption of particles. In J. Toth (Ed.), Adsorption, theory, modelling, and analysis. New York: Marcel Dekker.

    Google Scholar 

  8. Adamczyk, Z. (2004). Kinetics of particle and protein adsorption. In E. Matijevic & M. Borkovec (Eds.), Surface and colloid science, volume 17. New York: Springer.

    Google Scholar 

  9. Adamczyk, Z. (2006). Particles at interfaces, interactions, deposition, structure. Amsterdam: Elsevier.

    Google Scholar 

  10. Adamczyk, Z., & Weronski, P. (1999). Application of the DLVO theory for particle deposition problems. Advances in Colloid and Interface Science, 83(1-3), 137–226. https://doi.org/10.1016/S0001-8686(99)00009-3.

    CAS  Article  Google Scholar 

  11. Adamczyk, Z., & Zembala, S. M. (1992). Reversible and irreversible adsorption of particles on homogeneous surfaces. Colloids and Surfaces, 62(1–2), 119–130. https://doi.org/10.1016/0166-6622(92)80043-2.

    CAS  Article  Google Scholar 

  12. Afreen, A., Ahmed, Z., & Anjum, N. (2018). Novel nutraceutical compounds. In A. M. Grumesezscu & A. M. Holban (Eds.), Therapeutic, probiotic and unconventional foods. London: Elsevier.

    Google Scholar 

  13. Agwuncha, S. C., Anusionwu, C. G., Owonubi, S. J., Sadiku, E. R., Busuguma, U. A., & Ibrahim, I. D. (2019). Extraction of cellulose nanofibers and their eco/friendly polymer composites. In I. S. Thomas, R. K. Mishra, & A. M. A. Asiri (Eds.), Sustainable polymer composites and nanocomposites. Springer Nature: Basel.

    Google Scholar 

  14. Al-Oqla, F. M., & Rababah, M. (2017). Challenges in design of nanocellulose and its composites for different applications. In M. Jawaid, S. Boufi, & H. P. S. Abdul Khalil (Eds.), Cellulose-reinforced nanofiber composites, production, properties, and applications. India: Woodhead Publishing.

    Google Scholar 

  15. Arredono, J. A., Jessop, P. G., Champagne, P., Bouchard, J., & Cunningham, M. F. (2017). Synthesis of CO2-responsive cellulose nanocrystals by surface-initiated Cu(0)-mediated polymerisation. Green Chemistry, 19(17), 4141–4152. https://doi.org/10.1039/C7GC01798G.

    Article  Google Scholar 

  16. Aveyard, R., Clint, J. H., Nees, D., & Paunov, V. N. (2000). Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces. Langmuir, 16(4), 1969–1979. https://doi.org/10.1021/la990887g.

    CAS  Article  Google Scholar 

  17. Bai, L., Huan, S., Xiang, W., & Rojas, O. J. (2018a). Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chemistry, 20(7), 1571–1582. https://doi.org/10.1039/c8gc00134k.

    CAS  Article  Google Scholar 

  18. Bai, L., Lv, S., Xiang, W., Huan, S., McClements, D. J., & Rojas, O. J. (2019a). Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids, 96, 699–708. https://doi.org/10.1016/j.foodhyd.2019.04.038.

    CAS  Article  Google Scholar 

  19. Bai, L., Lv, S., Xiang, W., Huan, S., McClements, D. J., & Rojas, O. J. (2019b). Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion. Food Hydrocolloids, 96, 709–716. https://doi.org/10.1016/j.foodhyd.2019.04.039.

    CAS  Article  Google Scholar 

  20. Bai, L., Xiang, W., Huan, S., & Rojas, O. J. (2018b). Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals. Biomacromolecules, 19(5), 1674–1685. https://doi.org/10.1021/acs.biomac.8b00233.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Ball, V. (2018). Self-assembly processes at intefaces, multiscale phenomena. London: Elsevier Ltd..

    Google Scholar 

  22. Bamba, B. S. B., Shi, J., Tranchant, C. C., Xue, S. J., Forney, C. F., Lim, L. T., et al. (2018). Coencapsulation of polyphenols and anthocyanins from blueberry pomace by double emulsion stabilized by whey proteins: effect of homogenization parameters. Molecules, 23(10), doi:https://https://doi.org/10.3390/molecules23102525.

  23. Bergfreund, J., Sun, Q., Fischer, P., & Bertsch, P. (2019). Adsorption of charged anisotropic nanoparticles at oil–water interfaces. Nanoscale Adv, 1(11), 4308–4312. https://doi.org/10.1039/c9na00506d.

    CAS  Article  Google Scholar 

  24. Bertsch, P., Arcari, M., Geue, T., Mezzenga, R., Nyström, G., & Fischer, P. (2019). Designing cellulose nanofibrils for stabilization of fluid interfaces. Biomacromolecules, 20(12), 4574–4580. https://doi.org/10.1021/acs.biomac.9b01384.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Bertsch, P., Diener, M., Scheuble, N., & Fischer, P. (2018). Adsorption and interfacial layer structure of unmodified nanocrystalline cellulose at air/water interfaces. Langmuir, 34(50), 15195–15202. https://doi.org/10.1021/acs.langmuir.8b03056.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Bertsch, P., & Fischer, P. (2020). Adsorption and interfacial structure of nanocelluloses at fluid interfaces. Advances in Colloid and Interface Science, 276, 102089. https://doi.org/10.1016/j.cis.2019.102089.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Bhattacharjee, S., Elimelech, M., & Borkovec, M. (1998). DLVO interaction between colloidal particles: beyond Derjaguin approximation. Croatica Chemica Acta, 71(4), 883–903.

    CAS  Google Scholar 

  28. Binks, B. P. (1998). Modern aspects of emulsion science. Royal Society of Chemistry.

  29. Binks, B. P., & Yin, D. (2016). Pickering emulsions stabilized by hydrophilic nanoparticles: in situ surface modification by oil. Soft Matter, 12, 6858–6867. https://doi.org/10.1039/C6SM01214K.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Bizmark, N. (2013). Dynamic surface tension as a probe of irreversible adsorption of nanoparticles at fluid-fluid interfaces. Waterloo, Ontario: University of Waterloo.

    Google Scholar 

  31. Bizmark, N. (2017). Ethyl cellulose nanoparticles in multiphase systems: foams, emulsions, and porous media. Waterloo, Ontario: University of Waterloo.

    Google Scholar 

  32. Bizmark, N., & Ioannidis, M. A. (2015). Effects of ionic strength on the colloidal stability and interfacial assembly of hydrophobic ethyl cellulose nanoparticles. Langmuir, 31(34), 9282–9289. https://doi.org/10.1021/acs.langmuir.5b01857.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Bizmark, N., & Ioannidis, M. A. (2017). Ethyl cellulose nanoparticles at the alkane–water interface and the making of Pickering emulsions. Langmuir, 33(40), 10568–10576. https://doi.org/10.1021/acs.langmuir.7b02051.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Bizmark, N., Ioannidis, M. A., & Henneke, D. E. (2014). Irreversible adsorption-driven assembly of nanoparticles at fluid interfaces revealed by a dynamic surface tension probe. Langmuir, 30(3), 710–717. https://doi.org/10.1021/la404357j.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Bon, S. A. F. (2015). The phenomenon of Pickering stailization: a basic introduction. In T. Ngai & S. A. F. Bon (Eds.), Particle-stabilized emulsions and colloids, formation and applications. London: Royal Society of Chemistry.

    Google Scholar 

  36. Borkar, R., Waghmare, S. S., & Arfin, T. (2017). Bacterial cellulose and polyester hydrogel matrices in biotechnology and biomedicine: current status and future prospects. In M. Jawaid & F. Mohammad (Eds.), Nanocellulose and nanohydrogel matrices: biotechnology and biomedical applications. Weinheim: Wiley.

    Google Scholar 

  37. Brown, A. J. (1886). XLIII. On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions, 49(0), 432–439. https://doi.org/10.1039/CT8864900432.

    CAS  Article  Google Scholar 

  38. Bu, L., Himmel, M. E., & Crowly, M. F. (2015). The molecular origins of twist in cellulose I-beta. Carbohydrate Polymers, 125, 146–152. https://doi.org/10.1016/j.carbpol.2015.02.023.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Bumbudsanpharoke, N., & Ko, S. (2015). Nano-food packaging: an overview of market, migration research, and safety regulations. Journal of Food Science, 80(5), 910–923. https://doi.org/10.1111/1750-3841.12861.

    CAS  Article  Google Scholar 

  40. Cadilhe, A., Araujo, N. A. M., & Privman, V. (2007). Random sequential adsorption: from continuum to lattice and pre-patterned substrates. Journal of Physics. Condensed Matter, 19(6), 12. https://doi.org/10.1088/0953-8984/19/6/065124.

    CAS  Article  Google Scholar 

  41. Capron, I. (2018). Application of nanocellulose as Pickering emulsifier. In K.-Y. Lee (Ed.), Nanocellulose and sustainability, production, properties, applications, and case studies. Boca Raton, FL: Taylor & Francis Group LLC.

    Google Scholar 

  42. Capron, I., & Cathala, B. (2013). Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules, 14(2), 291–296. https://doi.org/10.1021/bm301871k.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Capron, I., Rojas, O., & Bordes, R. (2017). Behavior of nanocellulose at interfaces. Current Opinion in Colloid & Interface Science, 29, 83–95. https://doi.org/10.1016/j.cocis.2017.04.001.

    CAS  Article  Google Scholar 

  44. Carlos, D. (2017). Nanostructure of lignocellulose and its importance for biomass conversion into chemicals and biofuels. In M. S. Buckeridge & A. P. De Souza (Eds.), Advances of basic science for second generation bioethanol from sugarcane. Cham: Springer International Publishing AG.

    Google Scholar 

  45. Carlsson, D. O., Lindh, J., Nyholm, L., Stromme, M., & Mihranyan, A. (2014). Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Advances, 4(94), 52289–52298. https://doi.org/10.1039/C4RA11182F.

    CAS  Article  Google Scholar 

  46. CFR172.800 (2019). Multipurpose additives. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=172&showFR=1&subpartNode=21:3.0.1.1.3.9. Accessed 18 May 2020.

  47. CFR175.300 (2019). Resinous and polymeric coatings. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=175.300. Accessed 19 May 2020.

  48. CFR176.170 (2019). Part 176-indirect food additives: paper and paperboard components. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=176.170. Accessed 6 Jan 2020.

  49. Chanamai, R., Horn, G., & McClements, D. J. (2002). Influence of oil polarity on droplet growth in oil-in-water emulsions stabilized by a weakly adsorbing biopolymer or a nonionic surfactant. Journal of Colloid and Interface Science, 247(1), 167–176. https://doi.org/10.1006/jcis.2001.8110.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Chauve, G., Faschini, C., & Jean, B. (2014). Separation of cellulose nanocrystals. In K. Oksman, A. P. Mathew, P. Qvintus, A. Bismarck, O. Rojas, & M. Sain (Eds.), Handbook of green materials, bionanomaterials: separation processes, characterization and properties (Vol. 5). Singapore: World Scientific Publishing Co. Pte. Ltd..

    Google Scholar 

  51. Chen, H. (2015). Lignocellulose biorefinery feedstock engineering. In Lignocellulose biorefinery engineering, principles and applications (pp. 37-86): Elsevier Ltd.

  52. Chen, Q.-H., Zheng, J., Xu, Y.-T., TYin, S.-W., Liu, F., & Tang, C.-H. (2018a). Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocolloids, 75, 125–130. https://doi.org/10.1016/j.foodhyd.2017.09.005.

    CAS  Article  Google Scholar 

  53. Chen, X., McClements, D. J., Wang, J., Zou, L., Deng, S., Liu, W., Yan, C., Zhu, Y., Cheng, C., & Liu, C. (2018b). Coencapsulation of (−)-epigallocatechin-3-gallate and quercetin in particle-stabilized W/O/W emulsion gels: controlled release and bioaccessibility. Journal of Agricultural and Food Chemistry, 66(14), 3691–3699. https://doi.org/10.1021/acs.jafc.7b05161.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Chen, Y. W., Lee, H. V., Juan, J. C., & Phang, S.-M. (2016). Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers, 151, 1210–1219. https://doi.org/10.1016/j.carbpol.2016.06.083.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Cheng, M., Qin, Z., Chen, Y., Liu, J., & Ren, Z. (2017). Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose, 24(8), 3243–3254. https://doi.org/10.1007/s10570-017-1339-1.

    CAS  Article  Google Scholar 

  56. Cheng, M., Qin, Z., Liu, Y., Qin, Y., Li, T., Chen, L., & Zhu, M. (2014). Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. Journal of Materials Chemistry A, 2(1), 251–258. https://doi.org/10.1039/c3ta13653a.

    CAS  Article  Google Scholar 

  57. Cherhal, F., Cousin, F., & Capron, I. (2016). Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals. Biomacromolecules, 17(2), 496–502. https://doi.org/10.1021/acs.biomac.5b01413.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Coelho, C. C. S., Michelin, M., Cerqueira, M. A., Goncalves, C., Tonon, R. V., Pastrana, L. M., et al. (2018). Cellulose nanocrystals from grape pomace: production, properties and cytotoxicity assessment. Carbohydrate Polymers, 192, 327–336. https://doi.org/10.1016/j.carbpol.2018.03.023.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Coffey, D. G., Bell, D. A., & Henderson, A. (2016). Cellulose and cellulose derivatives. In A. M. Stephen, G. O. Philips, & P. A. Williams (Eds.), Food polysaccharides and their applications. Boca Raton, FL: Taylor & Francis Group, LLC.

    Google Scholar 

  60. Conley, K., Godbout, L., EWhitehead, M. A. T., & van de Ven, T. G. M. (2016). Origin of the twist of celluloseic materials. Carbohydrate Polymers, 135, 285–299. https://doi.org/10.1016/j.carbpol.2015.08.029.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Conlisk, A. T. (2013). Elements of electrochemistry and the electrical double layer. In Essentials of micro- and nanofluidics: with applications to the biological and chemical sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  62. Criado, P., Hossain, F. M. J., Salmieri, S., & Lacroix, M. (2018). Nanocellulose in food packaging. In G. Cirillo, A. Kozlowski, & U. G. Spizzirri (Eds.), Composite materials for food packaging. New York: Wiley.

    Google Scholar 

  63. Cui, M., Miesch, C., Kosif, I., Nie, H., Kim, P. Y., Kim, H., Emrick, T., & Russell, T. P. (2017). Transition in dynamics as nanoparticles jam at the liquid/liquid interface. Nano Letters, 17(11), 6855–6862. https://doi.org/10.1021/acs.nanolett.7b03159.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Cunha, A. G., Mougel, J. B., Cathala, B., Berglund, L. A., & Capron, I. (2014). Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir, 30(31), 9327–9335. https://doi.org/10.1021/la5017577.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Dagastine, R. R., & Stevenes, G. W. (2005). Direct force measurement at liquid/liquid interfaces. In H. Watari, N. Teramae, & T. Sawada (Eds.), Interfacial nanochemistry, molecular science and engineering at liquid/liquid interfaces. New York: Kluwer Academic/Plenum.

    Google Scholar 

  66. Dang, X., Liu, P., Yang, M., Deng, H., Shan, Z., & Zhen, W. (2019). Production and characterization of dialdehyde cellulose through green and sustainable approach. Cellulose, 26(18), 9503–9515. https://doi.org/10.1007/s10570-019-02747-9.

    CAS  Article  Google Scholar 

  67. de Souza Lima, M. M., & Borsali, R. (2004). Rodlike cellulose microcrystals: structure, properties, and applications. Macromolecular Rapid Communications, 25(7), 771–787. https://doi.org/10.1002/marc.200300268.

    CAS  Article  Google Scholar 

  68. DeLoid, G. M., Sohal, I. S., Lorente, L. R., Molina, R. M., Pygiotakis, G., Stevanovic, A., et al. (2018). Reducing intestinal digestion and absorption of fat using a nature-derived biopolymer: interference of triglyceride hydrolysis by nanocellulose. ACS Nano, 12(7), 6469–6479. https://doi.org/10.1021/acsnano.8b03074.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Derjaguin, B. (1934). Untersuchungen über die Reibung und Adhäsion, IV. Kolloid Zeitschrift, 69(2), 155–164. https://doi.org/10.1007/BF01433225.

    Article  Google Scholar 

  70. Dhar, P., Mudenur, C., & Katiyar, W. (2019). Food packaging: cellulose nanocrystals. In M. Mishra (Ed.), Encyclopedia of polymer applications, 3 Volume Set. Boca Raton, FL: Taylor & Francis Group, LLC.

    Google Scholar 

  71. Diamant, H., & Andelman, D. (1997). Adsorption kinetics of surfactants at fluid-fluid interfaces. In J. Texter (Ed.), Amphiphiles at interface (Vol. 103, pp. 51-59, Vol. Progress in Colloid & Polymer Science): Steinkopff.

  72. Dickinson, E. (2010). Food emulsions and foams: stabilization by particles. Current Opinion in Colloid & Interface Science, 15(1-2), 40–49. https://doi.org/10.1016/j.cocis.2009.11.001.

    CAS  Article  Google Scholar 

  73. Dong, S., Hirani, A. A., Colcino, K. R., Lee, Y. W., & Roman, M. (2012). Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life, 2(3), 1–11. https://doi.org/10.1142/S1793984412410061.

    CAS  Article  Google Scholar 

  74. Dong, X. M., Revol, J.-F., & Gray, D. G. (1998). Effect of microcrystalline preparation conditions on the formation of colloid crystals of cellulose. Cellulose, 5(1), 19–32. https://doi.org/10.1023/A:1009260511939.

    CAS  Article  Google Scholar 

  75. Du, K., Glogowski, E., Emrick, T., Russell, T. R., & Dinsmore, A. D. (2010). Adsorption energy of nano- and microparticles at liquid-liquid interfaces. Langmuir, 26(15), 12518–12522. https://doi.org/10.1021/la100497h.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Du, W., Guo, J., Li, H., & Gao, Y. (2017). Heterogeneously modified cellulose nanocrystals-stabilized Pickering emulsion: preparation and their template application for the creation of PS microspheres with amino-rich surfaces. ACS Sustainable Chemistry & Engineering, 5(9), 7514–7523. https://doi.org/10.1021/acssuschemeng.7b00375.

    CAS  Article  Google Scholar 

  77. Dufresne, A. (2012a). Nanocellulose, from nature to high performance tailored materials. Berlin/Boston: Walter de Gruyter GmbH.

    Google Scholar 

  78. Dufresne, A. (2012b). Nanocellulose: potential reinforcement in composites. In M. John & S. Thomas (Eds.), Natural polymers: volume 2: nanocomposites. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  79. Dufresne, A. (2017). Cellulose nanomaterial reinforced polymer nanocomposites. Current Opinion in Colloid & Interface Science, 29, 1–8. https://doi.org/10.1016/j.cocis.2017.01.004.

    CAS  Article  Google Scholar 

  80. Dufresne, A. (2018). Rheological behavior of nanocellulose suspensions and self-assembly. In Nanocellulose: from nature to high performance tailored materials. Berlin/Boston: Walter de Gruyter GmbH.

    Google Scholar 

  81. Dufresne, A., & Lin, N. (2015). Characterization of polysaccharide nanocrystal-based materials. In J. Huang, P. R. Chang, N. Lin, & A. Dufrense (Eds.), Polysaccharide-based nanocrystals: chemistry and applications: Wiley-VCH Verlag GmbH & Co. and Chemical Industry Press.

  82. Dugyala, V. R., Daware, S. V., & Basavaraj, M. G. (2013). Shape anisotropic colloids: synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization. Soft Matter, 9(29), 6711. https://doi.org/10.1039/c3sm50404b.

    CAS  Article  Google Scholar 

  83. Dugyala, V. R., Muthukuru, J. S., Mani, E., & Basavaraj, M. G. (2016). Role of electrostatic interactions in the adsorption kinetics of nanoparticles at fluid–fluid interfaces. Physical Chemistry Chemical Physics, 18(7), 5499–5508. https://doi.org/10.1039/C5CP05959C.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Eichhorn, S. J., & Davies, G. R. (2006). Modelling the crystalline deformation of native and regenerated cellulose. Cellulose, 13(3), 291–307. https://doi.org/10.1007/s10570-006-9046-3.

    CAS  Article  Google Scholar 

  85. Farinato, R. S., & Dubin, P. L. (1999). Colloid-polymer interactions: from fundamentals to practice: Wiley.

  86. FDA (2020). Inactive ingredients search for approved drug products. https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm?event=browseByLetter.page&Letter=M. Accessed 19 May 2020.

  87. Finkle, P., Draper, H. D., & Hildebrand, J. H. (1923). The theory of emulsification 1. Journal of the American Chemical Society, 45(12), 2780–2788. https://doi.org/10.1021/ja01665a002.

    CAS  Article  Google Scholar 

  88. Fleming, K., Gray, D. G., & Matthews, S. (2001). Cellulose crystallites. Chemistry - A European Journal, 7(9), 1831–1836. https://doi.org/10.1002/1521-3765(20010504)7:9<1831::AID-CHEM1831>3.0.CO;2-S.

    CAS  Article  Google Scholar 

  89. Foresti, M. L., Cerrutti, P., & Vazquez, A. (2015). Bacterial nanocellulose: synthesis, properties and applications. In S. Mohanty, S. K. Nayak, B. S. Kaith, & S. Kalia (Eds.), Polymer nanocomposities based on inorganic and organic nanomaterials. Hoboken: Scivener Publishing LLC, Wiley.

  90. Fortunati, E., Kenny, J. M., & Torre, L. (2019). Lignocellulosic materials as reinforcement in sustainable packaging systems:Processing, properties, and applications. In D. Verma, E. Fortunati, S. Jain, & X. Zhang (Eds.), Biomass, biopolymer-based materials, and bioenergy, construction, biomedical, and other industrial applications. London: Elsevier Ltd..

    Google Scholar 

  91. Franco, T. S., Martinez Rodriguez, D. C., Jimenez Soto, M. F., Himenez Amezcua, R. M., Urquiza, M. R., Mijares, E. M., et al. (2020). Production and technological characteristics of avocado oil emulsions stabilized with cellulose nanofibrils isolated from agroindustrial residues. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 586, 124263. https://doi.org/10.1016/j.colsurfa.2019.124263.

    CAS  Article  Google Scholar 

  92. Fu, W., Liu, Y., Yang, C., Wang, W., Wang, M., & Jia, Y. (2015). Stabilization of Pickering emulsions by bacterial cellulose nanofibrils. Key Engineering Materials, 645-646, 1247–1254. https://doi.org/10.4028/www.scientific.net/KEM.645-646.1247.

    Article  Google Scholar 

  93. Fujisawa, S., Togawa, E., & Kuroda, K. (2017). Nanocellulose-stabilized Pickering emulsions and their applications. Science and Technology of Advanced Materials, 18(1), 959–971. https://doi.org/10.1080/14686996.2017.1401423.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Gaillet, S., & Rouanet, J.-M. (2015). Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms – a review. Food and Chemical Toxicology, 77, 58–63. https://doi.org/10.1016/j.fct.2014.12.019.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Galanakis, C. M. (2017). Nutraceutical and functional food components, effect of innovative processing techniques. London: Elsevier Inc..

    Google Scholar 

  96. Gama, M., Gatenholm, P., & Klemm, D. (2013). Bacterial nanocellulose, a sophisticated multifunctional material. Boca Raton, FL: Taylor & Francis Group, LLC.

    Google Scholar 

  97. Giri, T. K. (2016). Bioavailability enhnacement of curcumin nutraceutical through nano-delivery systems. In A. M. Grumezescu (Ed.), Nutraceuticals. Oxford: Elsevier Inc..

    Google Scholar 

  98. Glasing, J., Jessop, P. G., Champagne, P., & Cunningham, M. F. (2018). Graft-modified cellulose nanocrystals as CO2-switchable Pickering emulsifiers. Polymer Chemistry, 9(28), 3864–3872. https://doi.org/10.1039/C8PY00417J.

    CAS  Article  Google Scholar 

  99. Gong, X., Wang, Y., & Chen, L. (2017). Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohydrate Polymers, 169, 295–303. https://doi.org/10.1016/j.carbpol.2017.04.024.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Guo, J., Du, W., Gao, Y., Gao, Y., & Yin, Y. (2017). Cellulose nanocrystals as water-in-oil Pickering emulsifiers via intercalative modification. Colloid Surfaces A, 529, 634–642. https://doi.org/10.1016/j.colsurfa.2017.06.056.

    CAS  Article  Google Scholar 

  101. Güzel, M., & Akpinar, O. (2019). Production and characterization of bacterial cellulose from citrus peels. Waste and Biomass Valorization, 10(8), 2165–2175. https://doi.org/10.1007/s12649-018-0241-x.

    CAS  Article  Google Scholar 

  102. Ha, J. H., Shehzad, O., Khan, S., Lee, S. Y., Park, J. W., Khan, T., & Park, J. K. (2008). Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean Journal of Chemical Engineering, 25(4), 812–815. https://doi.org/10.1007/s11814-008-0134-y.

    CAS  Article  Google Scholar 

  103. Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose Nanocrystals- chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500. https://doi.org/10.1021/cr900339w.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Hadden, J. A., French, A. D., & Woods, R. J. (2013). Unraveling cellulose microfibrils: a twisted tale. Biopolymers, 99(10), 746–756. https://doi.org/10.1002/bip.22279.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Hamaker, H. C. (1937). The London-van der Waals attraction between spherical particles. Physica, 4(10), 1058–1072. https://doi.org/10.1016/S0031-8914(37)80203-7.

    CAS  Article  Google Scholar 

  106. Han, L., Ratcliffe, I., & Williams, P. A. (2015). Self-assembly and emulsification properties of hydrophobically modified inulin. Journal of Agricultural and Food Chemistry, 63(14), 3709–3715. https://doi.org/10.1021/acs.jafc.5b00333.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Han, Y., Bizmark, N., Abukhdeir, N. M., & IOnnidis, M. A. (2017). Dynamics of ethyl cellulose nanoparticle self-assembly at the interface of a nematic liquid crystal droplet. Physical Chemistry Chemical Physics, 19(36), 24955–24960. https://doi.org/10.1039/C7CP04421F.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. He, X., & Hwang, H.-M. (2016). Nanotechnology in food science: functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 24(4), 671–681. https://doi.org/10.1016/j.jfda.2016.06.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Hinrichsen, E. L., Feder, J., & Jøssang, T. (1986). Geometry of random sequential adsorption. Journal of Statistical Physics, 44(5–6), 793–827. https://doi.org/10.1007/BF01011908.

    Article  Google Scholar 

  110. Hiranphinyophat, S., Asaumin, Y., Fuji, S., & Iwasaki, Y. (2019). Surface grafting polyphosphoesters on cellulose nanocrystals to improve the emulsification efficacy. Langmuir, 35(35), 11443–11451. https://doi.org/10.1021/acs.langmuir.9b01584.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Hirose, Y., Komura, S., & Kato, T. (2008). Adsorption dynamics in Pickering emulsions. Progress in Theoretical Physics, 175, 81–92. https://doi.org/10.1143/PTPS.175.81.

    Article  Google Scholar 

  112. Hong, F., Guo, X., Han, S.-F., Yang, G., & Jönsson, L. J. (2012). Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic pretreatment. Bioresource Technology, 104, 503–508. https://doi.org/10.1016/j.biortech.2011.11.028.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Hong, F., & Qiu, K. (2008). An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers, 72(3), 545–549. https://doi.org/10.1016/j.carbpol.2007.09.015.

    CAS  Article  Google Scholar 

  114. Horozov, T. S., Aveyard, R., Binks, B. P., & Clint, J. H. (2005). Structure and stability of silica particle monolayers at horizontal and vertical octane-water interfaces. Langmuir, 21(16), 7405–7412. https://doi.org/10.1021/la050923d.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Horozov, T. S., Aveyard, R., Clint, J. H., & Binks, B. P. (2003). Order−disorder transition in monolayers of modified monodisperse silica particles at the octane−water interface. Langmuir, 19(7), 2822–2829. https://doi.org/10.1021/la020858x.

    CAS  Article  Google Scholar 

  116. Hristov, J. (2016). A unified nonlinear fractional equation of the diffusion-controlled surfactant adsorption: reappraisal and new solution of the Ward-Tordai problem. J King Saud Univ Sci, 28(1), 7–13. https://doi.org/10.1016/j.jksus.2015.03.008.

    Article  Google Scholar 

  117. Hu, Z., Ballinger, S., Pelton, R., & Cranston, E. D. (2015). Surfactant-enhanced cellulose nanocrystal Pickering emulsions. Journal of Colloid and Interface Science, 439, 139–148. https://doi.org/10.1016/j.jcis.2014.10.034.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Hua, X., Frechette, J., & Bevan, M. A. (2018). Nanoparticle adsorption dynamics at fluid interfaces. Soft Matter, 14(19), 3818–3828. https://doi.org/10.1039/C8SM00273H.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Huan, S., Yokota, S., Bai, L., Ago, M., Borghei, M., Kondo, T., & Rojas, O. J. (2017). Formulation and composition effects in phase transitions of emulsions costabilized by cellulose nanofibrils and an ionic surfactant. Biomacromolecules, 18(12), 4393–4404. https://doi.org/10.1021/acs.biomac.7b01452.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Hussin, M. H., Trache, D., Tan, C., Chuin, H., Nurul Fazita, M. R., Mohamad Haafiz, M. K., et al. (2019). Extraction of cellulose nanofibers and their eco-friendly polymer composites. In I. Sabu Thomas, R. K. Mishra, & A. A.M. (Eds.), Sustainable polymer composites and nanocomposites. Cham: Springer Nature.

  121. Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71–85. https://doi.org/10.1039/C0NR00583E.

    CAS  Article  Google Scholar 

  122. Israelachvili, J. N. (2011). Intermolecular & surface forces. Waltham: Elsevier.

    Google Scholar 

  123. Jachimska, B. (2011). Physicochemical characterization of anisotropic molecules (polyelectrolytes and proteins) in bulk solutions. In M. Fanun (Ed.), Colloids in biotechnology Vol. Surfactant science series volume 152. Boca Raton, FL: Taylor & Francis Group LLC.

    Google Scholar 

  124. Jackson, J. K., Letchford, K., Wassman, B. Z., Ye, L., Hamad, W. Y., & Burt, H. M. (2011). The use of nanocrystalline cellulose for the binding and controlled release of drugs. International Journal of Nanomedicine, 6, 321–330. https://doi.org/10.2147/IJN.S16749.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. Jafari, S. M., & McClements, D. J. (2018). Nanoemulsions, formulation, applications, and characterization. Elsevier Inc.

  126. Jedrzejczak-Krzepkowska, M., Kubiak, K., Ludwicka, K., & Bielecki, S. (2016). Bacterial nanocellulose synthesis, recent findings. In M. Gama, F. Dourado, & S. Bielecki (Eds.), Bacterial nanocellulose, from biotechnology to bio-economy. Elsevier B.V: Oxford.

    Google Scholar 

  127. Jiang, F., & Hsieh, Y. L. (2015). Holocellulose nanocrystals: amphiphilicity, oil/water emulsion, and self-assembly. Biomacromolecules, 16(4), 1433–1441. https://doi.org/10.1021/acs.biomac.5b00240.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. Jordan, J. H., Easson, M. W., & Condon, B. D. (2019). Alkali hydrolysis of sulfated cellulose nanocrystals: optimization of reaction conditions and tailored surface charge. Nanomaterials, 9(9). https://doi.org/10.3390/nano9091232.

  129. Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa Jr., A., et al. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063–2072. https://doi.org/10.1007/s00253-015-7243-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. Jozala, A. F., Nedel Pertile, R. A., dos Santos, C. A., de Carvalho Santos-Ebinum, V., Martins Seckler, M., Gama, et al. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol, 99(3), 1181–1190. https://doi.org/10.1007/s00253-014-6232-3

  131. Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B., & Capron, I. (2013). Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter, 9(3), 952–959. https://doi.org/10.1039/c2sm26472b.

    CAS  Article  Google Scholar 

  132. Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., & Sheltami, R. M. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3), 855–866. https://doi.org/10.1007/s10570-012-9684-6.

    CAS  Article  Google Scholar 

  133. Kasiri, N., & Fathi, M. (2018). Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules, 106, 1023–1031. https://doi.org/10.1016/j.ijbiomac.2017.08.112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Kholodenko, A. L., & Douglas, J. F. (1995). Generalized Stokes-Einstein equation for spherical particle suspensions. Physical Review E, 51(2), 1081–1090. https://doi.org/10.1103/PhysRevE.51.1081.

    CAS  Article  Google Scholar 

  135. Kim, J.-W., Larsen, R. J., & Weitz, D. A. (2006). Synthesis of nonspherical colloidal particles with anisotropic properties. Journal of the American Chemical Society, 128(44), 14374–14377. https://doi.org/10.1021/ja065032m.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. Kirschner, K. N., & Woods, R. J. (2001). Solvent interactions determine carbohydrate conformation. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 98(19), 10541–10545. https://doi.org/10.1073/pnas.191362798.

    CAS  Article  Google Scholar 

  137. Krâssig, H. A. (1993). Cellulose, structure, accessibility and reactivity. Singapore: Gordon and Breach Science Publishers.

    Google Scholar 

  138. Kronberg, B., Holmberg, K., & Lindman, B. (2017). Surface chemistry of surfactants and polymers. Chichester: Wiley.

    Google Scholar 

  139. Kunwar, A., & Priyadarsini, K. I. (2016). Curcumin and its role in chronic diseases. In S. C. Gupta, S. Prasad, & B. B. Aggarwal (Eds.), Anti-inflammatory nutraceuticals and chronic diseases. Cham: Springer International Publishing.

    Google Scholar 

  140. Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76(2), 333–335. https://doi.org/10.1016/j.carbpol.2008.11.009.

    CAS  Article  Google Scholar 

  141. Le, H. D., Loveday, S. M., Singh, H., & Sarkar, A. (2020). Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: responsiveness to pH and ionic strength. Food Hydrocolloids, 99, 105344. https://doi.org/10.1016/j.foodhyd.2019.105344.

    CAS  Article  Google Scholar 

  142. Lee, H., Sundaram, J., & Mani, S. (2017). Production of cellulose nanofibrils and their application to food: a review. In R. Prasad, V. Kumar, & M. Kumar (Eds.), Nanotechnology, food and environmental paradigm. Springer Nature: Singapore.

    Google Scholar 

  143. Lee, K.-Y., Aitomäki, Y., Berglund, L. A., Oksman, K., & Bismarck, A. (2014a). On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 105, 15–27. https://doi.org/10.1016/j.compscitech.2014.08.032.

    CAS  Article  Google Scholar 

  144. Lee, K.-Y., & Bismarck, A. (2016). Bacterial nanocellulose as reinforcement for polymer matrices. In M. Gama, F. Dourado, & S. Bielecki (Eds.), Bacterial nanocellulose, from biotechnology to bio-economy: Elsevier B.V.

  145. Lee, K.-Y., Delille, A., & Bismarck, A. (2011). Greener surface treatments of natural fibres for the production of renewable composite materials. In S. Kalia, B. S. Kaith, & I. Kaur (Eds.), Cellulose fibers: bio- and nano-polymer composites: green chemistry and technology. Berlin: Springer.

    Google Scholar 

  146. Lee, K. Y., Blaker, J. J., Murakami, R., Heng, J. Y., & Bismarck, A. (2014b). Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir, 30(2), 452–460. https://doi.org/10.1021/la4032514.

    CAS  Article  PubMed  Google Scholar 

  147. Lekkerkerker, H. N. W., & Tuinier, R. (2011). Depletion interaction. In Colloids and depletion interaction (pp. 57–108). Dordrecht: Springer Science+Business Media.

    Google Scholar 

  148. Leolovich, M. (2016). Cellulose: structure and property relationships. In V. K. Thakur & M. K. Thakur (Eds.), Handbook of sustainable polymers, structure and chemistry. Boca Raton, FL: Taylor & Francis Group, LLC.

    Google Scholar 

  149. Leung, A. C. W., Hrapovic, S., Lam, E., Liu, Y., Male, K. B., Mahmoud, K. A., & Luong, J. H. T. (2011). Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small, 7(3), 302–305. https://doi.org/10.1002/smll.201001715.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kiong, L., et al. (2012). Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polymers, 90(4), 1609–1613. https://doi.org/10.1016/j.carbpol.2012.07.038.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Liimatainen, H., Visanko, M., Sirviö, J. A., Hormi, O. E. O., & Niinimaki, J. (2012). Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules, 13(5), 1592–1597. https://doi.org/10.1021/bm300319m.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Lin, N., & Dufresne, A. (2014). Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale, 6(10), 5384–5393. https://doi.org/10.1039/C3NR06761K.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. Liu, B., Zhu, Y., Tian, J., Guan, T., Li, D., Bao, C., Norde, W., Wen, P., & Li, Y. (2019a). Inhibition of oil digestion in Pickering emulsions stabilized by oxidized cellulose nanofibrils for low-calorie food design. RSC Advances, 9(26), 14966–14973. https://doi.org/10.1039/c9ra02417d.

    CAS  Article  Google Scholar 

  154. Liu, L., Hu, Z., Sui, X., Guo, J., Cranston, E. D., & Mao, Z. (2018a). Effect of counterion choice on the stability of cellulose nanocrystal Pickering emulsions. Industrial and Engineering Chemistry Research, 57(21), 7169–7180. https://doi.org/10.1021/acs.iecr.8b01001.

    CAS  Article  Google Scholar 

  155. Liu, S., Li, X., Chen, L., Li, L., Li, B., & Zhu, J. (2018b). Tunable d-limonene permeability in starch-based nanocomposite films reinforced by cellulose nanocrystals. Journal of Agricultural and Food Chemistry, 66(4), 979–987. https://doi.org/10.1021/acs.jafc.7b05457.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. Liu, S., Zhu, Y., Wu, Y., Lue, A., & Zhang, C. (2019b). Hydrophobic modification of regenerated cellulose microparticles with enhanced emulsifying capacity for O/W Pickering emulsion. Cellulose, 26(10), 6215–6228. https://doi.org/10.1007/s10570-019-02538-2.

    CAS  Article  Google Scholar 

  157. Liu, Y., Liu, L., Wang, K., Zhang, H., Yuan, Y., Wei, H., Wang, X., Duan, Y., Zhou, L., & Zhang, J. (2020). Modified ammonium persulfate oxidations for efficient preparation of carboxylated cellulose nanocrystals. Carbohydrate Polymers, 229, 115572. https://doi.org/10.1016/j.carbpol.2019.115572.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. Loelovich, M. (2016). Nanocellulose-fabrication, structure, properties, and application in the area of care and cure. In A. M. Grumesezscu (Ed.), Fabrication and self-assembly of nanobiomaterials, applications of nanobiomaterials. Elsevier Inc.: Oxford.

    Google Scholar 

  159. Loelovich, M. (2017). Characterization of various kinds of nanocellulose. In H. Kargarzadeh, I. Ahmad, S. Thomas, & A. Duresne (Eds.), Handbook of nanocellulose and cellulose nanocomposites. Weinheim: Wiley-VCH Verlag GmbH & Co..

    Google Scholar 

  160. Lu, P., & Hsieh, Y.-L. (2010). Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydrate Polymers, 82(2), 329–336. https://doi.org/10.1016/j.carbpol.2010.04.073.

    CAS  Article  Google Scholar 

  161. Luo, J., Semenikhin, N., Chang, H., Moon, R. J., & Kumar, S. (2018). Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility. Carbohydrate Polymers, 181, 247–255. https://doi.org/10.1016/j.carbpol.2017.10.077.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  162. Lyklema, J. (2005). Fundamentals of interface and colloid science: particulate colloids. Amsterdam: Elsevier Ltd..

    Google Scholar 

  163. Mackie, A., Gourcy, S., Rigby, N., Moffat, J., Capron, I., & Bajka, B. (2019). The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. Nanoscale, 11(6), 2991–2998. https://doi.org/10.1039/c8nr05860a.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. Madivala, B., Vandebril, S., Fransaer, J., & Vermant, J. (2009). Exploiting particle shape in solid stabilized emulsions. Soft Matter, 5(8), 1717–1727. https://doi.org/10.1039/B816680C.

    CAS  Article  Google Scholar 

  165. Mao, L., Wang, D., Liu, F., & Gao, Y. (2018). Emulsion design for the delivery of beta-carotene in complex food systems. Critical Reviews in Food Science and Nutrition, 58(5), 770–784. https://doi.org/10.1080/10408398.2016.1223599.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Marefati, A., Bertrand, M., Sjöö, M., Dejmek, P., & Rayner, M. (2017). Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization. Food Hydrocolloids, 63, 309–320. https://doi.org/10.1016/j.foodhyd.2016.08.043.

    CAS  Article  Google Scholar 

  167. Mariani, L. M., Vankayalapati, G. S., Considine, J. M., & Turner, K. T. (2020). Characterization of fiber alignment and mechanical properties of printed cellulose nanofibril films. In M. E. Grady (Ed.), Mechanics of biological systems and materials & micro-and nanomechanics, Volume 4, Proceedings of the 2019 Annual Conference on Experimental and Applied Mechanics. Cham: Springer.

    Google Scholar 

  168. Marquis, M., Alix, V., Capron, I., Cuenot, S., & Zykwinska, A. (2016). Microfluidic encapsulation of Pickering oil microdroplets into alginate microgels for lipophilic compound delivery. ACS Biomaterials Science & Engineering, 2(4), 535–543. https://doi.org/10.1021/acsbiomaterials.5b00522.

    CAS  Article  Google Scholar 

  169. Massoudieh, A., & Ginn, T. R. (2010). Colloid-facilitated contaminant transport in unsaturated porous media. In G. Hanrahan (Ed.), Modelling of pollutants in complex environmental systems (Vol. second). St. Albans: ILM Publications.

    Google Scholar 

  170. Matos, M., Laca, A., Rea, F., Iglesias, O., Rayner, M., & Gutierrez, G. (2018). O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: stability, rheological behaviour and resveratrol encapsulation. Journal of Food Engineering, 222, 207–217. https://doi.org/10.1016/j.jfoodeng.2017.11.009.

    CAS  Article  Google Scholar 

  171. Mazeau, K., & Heux, L. (2003). Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. The Journal of Physical Chemistry. B, 107(10), 2394–2403. https://doi.org/10.1021/jp0219395.

    CAS  Article  Google Scholar 

  172. McClements, D. J., Henson, L., Popplewell, M., Decker, E. A., & Choi, S. J. (2012). Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils. Journal of Food Science, 77(1), C33–C38. https://doi.org/10.1111/j.1750-3841.2011.02484.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. McClements, D. J., Li, F., & Xiao, H. (2015). The nutraceutical bioavailability classification scheme: classifying nutraceuticals according to factors limiting their oral bioavailability. Annual Review of Food Science and Technology, 6(1), 299–327. https://doi.org/10.1146/annurev-food-032814-014043.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  174. Mercier, J. P., Zambell, G., & Kurz, W. (2002). Nanomaterials and nanostructured materials. In Introduction to materials science. Paris: Elsevier.

    Google Scholar 

  175. Miao, C., Tayebi, M., & Hamad, W. Y. (2018). Investigation of the formation mechanisms in high internal phase Pickering emulsions stabilized by cellulose nanocrystals. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 376(2112), 20170039. https://doi.org/10.1098/rsta.2017.0039.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. Mikulcová, V., Bordes, R., & Kasparkova, V. (2016). On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocolloids, 61, 780–792. https://doi.org/10.1016/j.foodhyd.2016.06.031.

    CAS  Article  Google Scholar 

  177. Mikulcová, V., Bordes, R., Minarik, A., & Kasparkova, V. (2018). Pickering oil-in-water emulsions stabilized by carboxylated cellulose nanocrystals – effect of the pH. Food Hydrocolloids, 80, 60–67. https://doi.org/10.1016/j.foodhyd.2018.01.034.

    CAS  Article  Google Scholar 

  178. Mirhranyan, A. (2011). Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. Journal of Applied Polymer Science, 119(4), 2449–2460. https://doi.org/10.1002/app.32959.

    CAS  Article  Google Scholar 

  179. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. https://doi.org/10.1039/c0cs00108b.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. Möschwitzer, J., & Müller, R. H. (2007). Drug nanocrystals-the universal formulation approach for poorly soluble drugs. In D. Thassu, M. Deleers, & Y. Pathak (Eds.), Nanoparticulate drug delivery systems. New York: Informa Healthcare USA Inc..

    Google Scholar 

  181. Narsimhan, G., Wang, Z., & Xiang, N. (2019). Guidelines for processing emulsion-based foods. In G. L. Hasenhuettl & R. W. Hartel (Eds.), Food emulsifiers and their applications (Third ed.). Cham: Springer Nature Switzerland AG.

    Google Scholar 

  182. Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: a review of recent advances. Industrial Crops and Products, 93, 2–25. https://doi.org/10.1016/j.indcrop.2016.02.016.

    CAS  Article  Google Scholar 

  183. Nguyen, A. V., & Schulze, H. J. (2004). Colloidal science of flotation, surfactant sciences series volume 118. Boca Raton, FL: Taylor & Francis Group LLC.

    Google Scholar 

  184. Ngwabebhoh, F. A., Erdagi, S. I., & Yildiz, U. (2018). Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: in vitro release, anticancer and antimicrobial activities. Carbohydrate Polymers, 201, 317–328. https://doi.org/10.1016/j.carbpol.2018.08.079.

    CAS  Article  Google Scholar 

  185. Niakousari, M., Seidi Damyeh, M., Hashemi Gahruie, H., Bekhit, A. E.-D. A., Greiner, R., & Roohinejad, S. (2018). Conventional emulsions. In S. Roohinejad, R. Greiner, I. Oey, & J. Wen (Eds.), Emulsion-based systems for delivery of food active compounds, formation, application, health, and safety. Oxford: Wiley.

    Google Scholar 

  186. Oun, A. A., & Rhim, J. W. (2017). Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydrate Polymers, 174, 484–492. https://doi.org/10.1016/j.carbpol.2017.06.121.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  187. Paajanen, A., Ceccherini, S., Maloney, T., & Ketoja, J. A. (2019). Chirality and bound water in the hierarchical cellulose structure. Cellulose, 26(10), 5877–5892. https://doi.org/10.1007/s10570-019-02525-7.

    CAS  Article  Google Scholar 

  188. Panagopoulou, E., Tsouko, E., Kopsahelis, N., Koutinas, A., Mandala, I., & Evageliou, V. (2015). Olive oil emulsions formed by catastrophic phase inversion using bacterial cellulose and whey protein isolate. Colloid Surface A, 486, 203–210. https://doi.org/10.1016/j.colsurfa.2015.09.056.

    CAS  Article  Google Scholar 

  189. Panchal, P., Ogunsona, E., & Mekonnen, T. (2018). Trends in advanced functional material applications of nanocellulose. Processes, 7(1), 10. https://doi.org/10.3390/pr7010010.

    CAS  Article  Google Scholar 

  190. Paximada, P., Koutinas, A. A., Scholten, E., & Mandala, I. G. (2016a). Effect of bacterial cellulose addition on physical properties of WPI emulsions. Comparison with common thickeners. Food Hydrocolloids, 54, 245–254. https://doi.org/10.1016/j.foodhyd.2015.10.014.

    CAS  Article  Google Scholar 

  191. Paximada, P., Tsouko, E., Kopsahelis, N., Koutinas, A. A., & Mandala, I. (2016b). Bacterial cellulose as stabilizer of O/W emulsions. Food Hydrocolloids, 53, 225–232. https://doi.org/10.1016/j.foodhyd.2014.12.003.

    CAS  Article  Google Scholar 

  192. Pettersen, R. C. (1984). The chemical composition of wood. In R. Rowell (Ed.), The chemistry of solid wood. Washington: American Chemical Society.

    Google Scholar 

  193. Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: extraction and application. Carbon Resour Convers, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004.

    Article  Google Scholar 

  194. Piao, S. H., Gao, C. Y., & Choi, H. J. (2017). Pickering emulsion-polymerized conducting polymer nanocomposites and their applications. Chemical Papers, 71(2), 179–188. https://doi.org/10.1007/s11696-016-0050-2.

    CAS  Article  Google Scholar 

  195. Pickering, S. U. (1907). CXCVI. Emulsions. Journal of the Chemical Society, 91(0), 2001–2021. https://doi.org/10.1039/CT9079102001.

    Article  Google Scholar 

  196. Pinkert, A., Marsh, K. N., Pang, S., & Staiger, M. P. (2009). Ionic liquids and their interaction with cellulose. Chemical Reviews, 109(12), 6712–6728. https://doi.org/10.1021/cr9001947.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  197. Poletto, M., Pistor, V., & Zattera, A. J. (2013). Structural characteristics and thermal properties of native cellulose. In T. G. van de Ven & L. Godbout (Eds.), Cellulose: fundamental aspects. Intech: Rijeka.

    Google Scholar 

  198. Pund, S., Joshi, A., & Patravale, V. (2016). Improving bioavailability of nutraceuticals by nanoemulsification. In A. M. Grumesezscu (Ed.), Nutraceuticals, nanotechnology in the agri-food industry, volume 4. Harrogate: Elsevier Inc.

    Google Scholar 

  199. Qiao, N., Fan, X., Zhang, X., Shi, Y., Wang, L., & Yi, D. (2019). Soybean oil refinery effluent traetment and its utilization for bacterial cellulose production by Gluonacetobacter xylinus. Food Hydrocolloid, 97, 105185. https://doi.org/10.1016/j.foodhyd.2019.105185

  200. Rajinipriya, M., Nagalakshmaiah, M., Robert, M., & Elkoun, S. (2018). Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustainable Chemistry & Engineering, 6(3), 2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437.

    CAS  Article  Google Scholar 

  201. Ramsden, W. (1904). Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)—preliminary account. Proceedings of the Royal Society of London, 72, 477–486. https://doi.org/10.1098/rspl.1903.0034.

    Article  Google Scholar 

  202. Rastogi, A., Singh, J., Das, M., Kundu, D., & Banerjee, R. (2018). An understanding of bacterial cellulose and its potential impact on industrial applications. In A. Kuila & V. Sharma (Eds.), Principles and applications of fermentation technology. Hoboken: Wiley.

    Google Scholar 

  203. Rayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P., & Wahlgren, M. (2014). Bioamss-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458, 48–62. https://doi.org/10.1016/j.colsurfa.2014.03.053.

    CAS  Article  Google Scholar 

  204. Ren, G., Zheng, X., Gu, H., Di, W., Wang, Z., Guo, Y., et al. (2019). Temperature and CO2 dual-responsive Pickering emulsions using Jeffamine M2005-modified cellulose nanocrystals. Langmuir, 35(42), 13663–13670. https://doi.org/10.1021/acs.langmuir.9b02497.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  205. Revol, J. F., Bradford, H., Giasson, J., Marchessault, R. H., & Gray, D. G. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 14(3), 170–172. https://doi.org/10.1016/S0141-8130(05)80008-X.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  206. Rowell, R. M., Pettersen, R. C., Han, J. S., Rowell, J. S., & Tshabalala, M. A. (2005). Cell wall chemistry. In R. M. Rowell (Ed.), Handbook of wood chemistry and wood composites. Taylor & Francis Group: Boca Raton, FL.

    Google Scholar 

  207. Rusmirovic, J., Rancic, M., & Marinkovic, A. (2018). Processing and characterization of modified nanocellulose/polyester composites. In T. Stevanovic (Ed.), Chemistry of lignocellulosics, current trends. Boca Raton: Taylor & Francis Group.

    Google Scholar 

  208. Sacui, I. A., Nieuwendaal, R. C., Burnett, D. J., Stranick, S. J., Jorfi, M., Weder, C., Foster, E. J., Olsson, R. T., & Gilman, J. W. (2014). Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Applied Materials & Interfaces, 6(9), 6127–6138. https://doi.org/10.1021/am500359f.

    CAS  Article  Google Scholar 

  209. Saffarionpour, S. (2019). Preparation of food flavor nanoemulsions by high- and low-energy emulsification approaches. Food Engineering Reviews, 11(4), 259–289. https://doi.org/10.1007/s12393-019-09201-3.

    Article  Google Scholar 

  210. Saidane, D., Perrin, E., Cherhal, F., Guellec, F., & Capron, I. (2016). Some modification of cellulose nanocrystals for functional Pickering emulsions. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374(2072), 20150139. https://doi.org/10.1098/rsta.2015.0139.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  211. Salaün, F., Butstraen, C., & Devaux, E. (2018). Sol-gel microencapsulation based on Pickering emulsion. In S. Karakus (Ed.), Science and technology behind nanoemulsions. IntechOpen: Rijeka.

    Google Scholar 

  212. Saxena, I. M., & Brown, R. M. J. (2013). Biosynthesis of bacterial cellulose. In M. Gama, P. Gatenholm, & D. Klemm (Eds.), Bacterial nanocellulose: a sophisticated multifunctional material. Boca Raton, FL: Taylor & Francis Group, LLC.

    Google Scholar 

  213. Scheuble, N., Geue, T., Kuster, S., Adamick, J., Mezzenga, R., Windhab, E. J., et al. (2016). Mechanically enhanced liquid interfaces at human body temperature using thermosensitive methylated nanocrystalline cellulose. Langmuir, 32(5), 1396–1404. https://doi.org/10.1021/acs.langmuir.5b04231.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  214. Schröder, A., Corstens, M. N., Ho, K. K. H. Y., Schröen, K., & Berton-Carabin, C. C. (2018). Pickering emulsions. In S. Roohinejad, R. Greiner, I. Oey, & J. Wen (Eds.), Emulsion-based systems for delivery of food active compounds. Chichester: Wiley.

    Google Scholar 

  215. Sheikhi, A., & van de Ven, T. G. M. (2017). Colloidal aspects of Janus-like hairy cellulose nanocrystalloids. Current Opinion in Colloid & Interface Science, 29, 21–31. https://doi.org/10.1016/j.cocis.2017.02.001.

    CAS  Article  Google Scholar 

  216. Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539–545. https://doi.org/10.1016/j.foodhyd.2013.07.012.

    CAS  Article  Google Scholar 

  217. Shufang, J., Ying, C., & Min, L. (2013). Nanocellulose applications in environmental protection. In Z. Jiang & Y.-H. Kim (Eds.), Nanotechnology and precision engineering. Stafa-Zurich: Trans Tech Publications Ltd..

    Google Scholar 

  218. Shukla, S. K., Choubey, R., & Bajpai, A. K. (2018). Cationic nanosorbents biopolymers: versatile materials for environmental cleanup. In S. B. Mishra & A. K. Mishra (Eds.), Bio- and nanosorbents from natural resources. Springer International.

  219. Singh, P., Duarte, H., Alves, L., Antunes, F., Moigne, N. L., Dormanns, J., et al. (2015). From cellulose dissolution and regeneration to added value applications-synergism between molecular understanding and material development. In M. Poletto, H. Luiz, & L. O. Junior (Eds.), Cellulose, fundamental aspects and current trends. IntechOpen: Rijeka.

    Google Scholar 

  220. Singh, S. (2002). Chiral liquid crystals. In D. A. Dunmur (Ed.), Liquid crystals, fundamentals. Singapore: World Scientific Publishing Co. Pte. Ltd..

    Google Scholar 

  221. Sirviö, J. A., Visanko, M., Laitinen, O., Ammala, A., & Liimatainen, H. (2016). Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. Carbohydrate Polymers, 136, 581–587. https://doi.org/10.1016/j.carbpol.2015.09.089.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  222. Sjöö, M., Rayner, M., & Wahlgren, M. (2015). Particle-stabilized emulsions. In M. Rayner & P. Dejmek (Eds.), Engineering aspects of food emulsification and homogenization. Boca Raton, FL: Taylor & Francis Group, LLC.

    Google Scholar 

  223. Soccol, C. R., Faraco, V., Karp, S. G., Vandenberghe, L. P. S., Soccol, V. T., Woiciechowski, A., et al. (2019). Lignocellulosic bioethanol: current status and future perspectives. In Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, biomass, biofuels, biochemicals (second ed., pp. 331-354): Elsevier Inc.

  224. Taheri, H., & Samyn, P. (2016). Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose, 23(2), 1221–1238. https://doi.org/10.1007/s10570-016-0866-5.

    CAS  Article  Google Scholar 

  225. Tambe, D. E., & Sharma, M. M. (1993). Factors controlling the stability of colloid-stabilized emulsions: I. An experimental investigation. Journal of Colloid and Interface Science, 157(1), 244–253. https://doi.org/10.1006/jcis.1993.1182.

    Article  Google Scholar 

  226. Tavakolian, M., Lerner, J., Medina Tovar, F., Frances, J., & Van de Ven, T. G. M. (2019). Dendrimer directed assembly of dicarboxylated hairy nanocellulose. Journal of Colloid and Interface Science, 541, 444–453. https://doi.org/10.1016/j.jcis.2019.01.100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  227. Teaca, C.-A., & Bodirlau, R. (2016). Rheology and processing of nanocellulose, nanochitin, and nanostarch/polymer bionanocomposites. In S. Thomas, R. Muller, & J. Abraham (Eds.), Rheology and processing of polymer nanocomposites. Hoboken: Wiley.

    Google Scholar 

  228. Tikekar, R. V., Pan, Y., & Nitin, N. (2013). Fate of curcumin encapsulated in silica nanoparticle stabilized Pickering emulsion during storage and simulated digestion. Food Res In, 51(1), 370–377. https://doi.org/10.1016/j.foodres.2012.12.027.

    CAS  Article  Google Scholar 

  229. Torgbo, S., & Sykai, P. (2018). Bacterial cellulose-based scaffold materials for bone tissue engineering. Applied Materials Today, 11, 34–49. https://doi.org/10.1016/j.apmt.2018.01.004.

    Article  Google Scholar 

  230. Trache, D., Hussin, M. H., Haafiz, M. K. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals- sources and production. Nanoscale, 9(5), 1763–1786. https://doi.org/10.1039/C6NR09494E.

    CAS  Article  PubMed  Google Scholar 

  231. Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V., & Koutinas, A. (2015). Bacterial cellulose production from industrial waste and by-product streams. International Journal of Molecular Sciences, 16(7), 14832–14849. https://doi.org/10.3390/ijms160714832.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  232. Ullah, M. W., Manan, S., Kiprono, S. J., Ul-Islam, M., & Yang, G. (2019). Synthesis, structure, and properties of bacterial cellulose In J. Huang, A. Dufresne, & N. Lin (Eds.), Nanocellulose: from fundamentals to advanced materials.Weinheim: Wiley.

  233. Usov, I., Nystrôm, G., Adamcik, J., Handschin, S., Schütz, C., Fall, A., et al. (2015). Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nature Communications, 6(1), 7564. https://doi.org/10.1038/ncomms8564.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  234. Van de Ven, T. G., & Sheikhi, A. (2016). Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale, 8(33), 15101–15114. https://doi.org/10.1039/C6NR01570K.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  235. Van Oss, C. J. (2006). Interfacial forces in aqueous media. Boca Raton, FL: Taylor & Francis Group, LLC.

    Google Scholar 

  236. Van Oss, C. J. (2008). The extended DLVO theory. In C. J. Van Oss (Ed.), Interface science and technology. Amsterdam: Elsevier B.V.

    Google Scholar 

  237. Van Oss, C. J., Chudhury, M. K., & Good, R. J. (1988). Interfacial Liftshitz-van der Waals and polar interaction in macroscopic systems. Chemical Reviews, 88(6), 927–941. https://doi.org/10.1021/cr00088a006.

    Article  Google Scholar 

  238. Vanderfleet, O. M., Osorio, D. A., & Cranston, E. D. (2018). Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 376(2112), 20170041. https://doi.org/10.1098/rsta.2017.0041.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  239. Varanasi, S., Henzel, L., Mendoza, L., Prathapan, R., Batchelor, W., Tabor, R., & Garnier, G. (2018). Pickering emulsions electrostatically stabilized by cellulose nanocrystals. Frontiers in Chemistry, 6, 409. https://doi.org/10.3389/fchem.2018.00409.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  240. Varshney, V. K., & Naithani, S. (2011). Chemical functionalization of cellulose derived from nonconventional sources. In S. Kalia, B. S. Kaith, & I. Kaur (Eds.), Cellulose fibers: bio-and nano-polymer composites, green chemistry and technology. Berlin: Springer.

    Google Scholar 

  241. Vazquez, A., Foresti, M. L., Cerrutti, P., & Galvagno, M. (2013). Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21(2), 545–554. https://doi.org/10.1007/s10924-012-0541-3.

    CAS  Article  Google Scholar 

  242. Wainwright, S. A., Biggs, W. D., Currey, J. D., & Gosline, J. M. (1976). Mechanical design in organisms. Princeton: Wiley.

    Google Scholar 

  243. Wang, H. (2013). Understanding of charge effects in Pickering emulsions and design of double Pickering emulsion templated composite microcapsules. Georgia Institute of Technology.

  244. Wang, L.-J., Hu, Y.-Q., Yin, S.-W., Lai, F.-R., & Wang, S.-Q. (2015). Fabrication and characterization of antioxidant Pickering emulsions stabilized by zein/chitosan complex particles (ZCPs). Journal of Agricultural and Food Chemistry, 63(9), 2514–2524. https://doi.org/10.1021/jf505227a.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  245. Wang, W., Du, G., Li, C., Zhang, H., Long, Y., & Ni, Y. (2016). Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydrate Polymers, 151, 1–8. https://doi.org/10.1016/j.carbpol.2016.05.052.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  246. Wang, Y., Wei, X., Li, J., Wang, F., Wang, Q., Zhang, Y., & Kong, L. (2017). Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Industrial Crops and Products, 104, 237–241. https://doi.org/10.1016/j.indcrop.2017.04.032.

    CAS  Article  Google Scholar 

  247. Wayman, M. (1973). Part II. Technical information on raw materials and pulp and paper manufacture. In M. Wayman (Ed.), Guide for planning pulp and paper enterprises. Food & Agriculture Organization: Rome.

    Google Scholar 

  248. Wei, L., Agarwal, U. P., Hirth, K. C., Matuana, L. M., Sabo, R. C., & Stark, N. M. (2017). Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohydrate Polymers, 169, 108–116. https://doi.org/10.1016/j.carbpol.2017.04.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  249. Wen, C., Yuan, Q., Liang, H., & Vriesekoop, F. (2014). Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals. Carbohydrate Polymers, 112, 695–700. https://doi.org/10.1016/j.carbpol.2014.06.051.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  250. Whitby, C. P., & Wanless, E. J. (2016). Controlling Pickering emulsion destabilisation: a route to fabricating new materials by phase inversion. Materials, 9(8). https://doi.org/10.3390/ma9080626.

  251. White, L. R. (1983). On the Deryaguin approximation for the interaction of macrobodies. Journal of Colloid and Interface Science, 95(1), 286–288. https://doi.org/10.1016/0021-9797(83)90103-0.

    CAS  Article  Google Scholar 

  252. Wiley. (2007). Kirk-Otmer food and feed technology, 2 Volume set. Hoboken: Wiley.

    Google Scholar 

  253. Winuprasith, T., Khomein, P., Mitbumrung, W., Suphantharika, M., Nitithamyong, A., & McClements, D. J. (2018). Encapsulation of vitamin D3 in Pickering emulsions stabilized by nanofibrillated mangosteen cellulose: impact on in vitro digestion and bioaccessibility. Food Hydrocolloids, 83, 153–164. https://doi.org/10.1016/j.foodhyd.2018.04.047.

    CAS  Article  Google Scholar 

  254. Winuprasith, T., & Suphantharika, M. (2013). Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids, 32(2), 383–394. https://doi.org/10.1016/j.foodhyd.2013.01.023.

    CAS  Article  Google Scholar 

  255. Winuprasith, T., & Suphantharika, M. (2015). Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food Hydrocolloids, 43, 690–699. https://doi.org/10.1016/j.foodhyd.2014.07.027.

    CAS  Article  Google Scholar 

  256. Wooster, T. J., Golding, M., & Sanguansri, P. (2008). Impact of oil type on nanoemulsion formation and ostwald ripening stability. Langmuir, 24(22), 12785–12765. https://doi.org/10.1021/la801685v.

    CAS  Article  Google Scholar 

  257. Xu, W., Zhang, Y., & Chen, T. (2019). Single particle nanocatalysis, fundamentals and applications. Weinheim: Wiley-VCH Verlag GmbH & C.

    Google Scholar 

  258. Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., & Wiesenborn, D. P. (2013). Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces, 5(8), 2999–3009. https://doi.org/10.1021/am302624t.

    CAS  Article  Google Scholar 

  259. Yan, H., Chen, X., Song, H., Li, J., Feng, Y., Shi, Z., Wang, X., & Lin, Q. (2017). Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil Pickering emulsion. Food Hydrocolloids, 72, 127–135. https://doi.org/10.1016/j.foodhyd.2017.05.044.

    CAS  Article  Google Scholar 

  260. Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., Liu, Z., & Yuan, W. (2017). An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Frontiers in Pharmacology, 8, 287. https://doi.org/10.3389/fphar.2017.00287.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  261. Yao, M., He, L., McClements, D. J., & Xiao, H. (2015). Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation, and toxicity. Journal of Agricultural and Food Chemistry, 63(36), 8044–8049. https://doi.org/10.1021/acs.jafc.5b03242.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  262. Ye, S., Yu, H.-Y., Wang, D., Zhu, J., & Gu, J. (2018). Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose, 25(9), 5139–5155. https://doi.org/10.1007/s10570-018-1917-x.

    CAS  Article  Google Scholar 

  263. Yu, C. (2014). Natural textile fibers: vegetable fibers. In R. Sinclai (Ed.), Textiles and fashion, materials, design and technology (pp. 29-56): Elsevier Ltd.

  264. Yu, H., Yan, C., & Yao, J. (2014). Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Advances, 4(104), 59792–59802. https://doi.org/10.1039/c4ra12691b.

    CAS  Article  Google Scholar 

  265. Yu, H.-Y., Zhang, D.-Z., Lu, F.-F., & Yao, J. (2016). New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustainable Chemistry & Engineering, 4(5), 2632–2643. https://doi.org/10.1021/acssuschemeng.6b00126.

    CAS  Article  Google Scholar 

  266. Yu, H. Y., Zhang, H., Song, M. L., Zhou, Y., Yao, J., & Ni, Q. Q. (2017). From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Applied Materials & Interfaces, 9(50), 43920–43938. https://doi.org/10.1021/acsami.7b09102.

    CAS  Article  Google Scholar 

  267. Yu, J. (2007). Microbial production of bioplastics from renewable resources. In Bioprocessing for value-added products from renewable resources, New technologies and applications (pp. 585-610): Elsevier Ltd.

  268. Zeng, X., Small, D. P., & Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85(3), 506–513. https://doi.org/10.1016/j.carbpol.2011.02.034.

    CAS  Article  Google Scholar 

  269. Zhai, X., Lin, D., Liu, D., & Yang, X. (2018). Emulsions stabilized by nanofibers from bacterial cellulose: new potential food-grade Pickering emulsions. Food Research International, 103, 12–20. https://doi.org/10.1016/j.foodres.2017.10.030.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  270. Zhang, J., Jiang, N., Dang, Z., Elder, T. J., & Ragauskas, A. J. (2008). Oxidation and sulfonation of cellulosics. Cellulose, 15(3), 489–496. https://doi.org/10.1007/s10570-007-9193-1.

    CAS  Article  Google Scholar 

  271. Zhang, X. (2014). Chemical structure of natural polymer fibers. In Fundamentals of fiber science. New York: DEStech Publications Inc..

    Google Scholar 

  272. Zhao, Y., Moser, C., Lindstrôm, M. E., Henriksson, G., & Li, J. (2017). Cellulose nanofibers from softwood, hardwood, and tunicate: preparation-structure-film performance interrelation. ACS Applied Materials & Interfaces, 9(15), 13508–13519. https://doi.org/10.1021/acsami.7b01738.

    CAS  Article  Google Scholar 

  273. Zhao, Z., Shklyaev, O. E., Nili, A., Mohamed, M. N. A., Kubicki, J. D., Crespi, V. H., & Zhong, L. (2013). Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. The Journal of Physical Chemistry. A, 117(12), 2580–2589. https://doi.org/10.1021/jp3089929.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  274. Zhong, Q., Chen, H., Zhang, Y., Pan, K., & Wang, W. (2015). Delivery systems for food applications: an overview of preparation methods and encapsulation, release, and dispersion properties. In C. M. Sabliov, H. Chen, & R. Y. Yada (Eds.), Nanotechnology and functional foods: effective delivery of bioactive ingredients. New York: Wiley.

    Google Scholar 

  275. Zhou, Y., Sun, S., Bei, W., Zahi, M. R., Yuan, Q., & Liang, H. (2018). Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals. International Journal of Biological Macromolecules, 112, 7–13. https://doi.org/10.1016/j.ijbiomac.2018.01.102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  276. Zhu, G., & Lin, N. (2019). Surface chemistry of nanocellulose. In J. Huang, A. Dufresne, & N. Lin (Eds.), Nanocellulose: from fundamentals to advanced materials. Weinheim: Wiley-VCH Verlag GmbH & co.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shima Saffarionpour.

Ethics declarations

Conflict of Interest

The author declares that she has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saffarionpour, S. Nanocellulose for Stabilization of Pickering Emulsions and Delivery of Nutraceuticals and Its Interfacial Adsorption Mechanism. Food Bioprocess Technol (2020). https://doi.org/10.1007/s11947-020-02481-2

Download citation

Keywords

  • Nanocellulose
  • Hydrophobic modification
  • Pickering emulsions
  • Nutraceuticals
  • Bioavailability
  • Interfacial adsorption