Use of Safe Substances as Additives for PVC Films and Their Effect on Enzymatic Browning of Gala Apples

Abstract

Some additives used in polymeric products can cause health problems; thus, lowering migration of such substances from the polymeric matrix is of concern. Given that migration is sometimes inevitable, the use of safe additives is an alternative. This work demonstrates the viability of employing generally recognized as safe (GRAS) substances (citric acid, vitamin C, and vitamin E) on PVC films plasticized with epoxidized waste cooking oil. The prepared films presented good mechanical properties, and in a few cases even exhibited improvements in properties such as increase in tensile strength and decrease in water vapor permeability. The films promoted a significant reduction in browning of refrigerated apple samples. The vitamin C-laden film was the most effective, being able to diminish apple browning even at room temperature. Among the tested additives, citric acid was the most effective in terms of protective action against oxidation, preventing degradation of procyanidin B2, caffeic acid, and epicatechin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., Bruna, J. E., Fávaro Perez, M. A., Ramos Souza Felipe, F., & Padula, M. (2017). Application of β-cyclodextrin/2-nonanone inclusion complex as active agent to design of antimicrobial packaging films for control of Botrytis cinerea. Food and Bioprocess Technology, 10(9), 1585–1594. https://doi.org/10.1007/s11947-017-1926-z.

    CAS  Article  Google Scholar 

  2. Alghunaim, N. S. S. (2015). Spectroscopic analysis of PMMA/PVC blends containing CoCl2. Results in Physics, 5, 331–336. https://doi.org/10.1016/j.rinp.2015.11.003.

    Article  Google Scholar 

  3. Ali, H. M., El-Gizawy, A. M., El-Bassiouny, R. E. I., & Saleh, M. A. (2015). Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products. Journal of Food Science and Technology, 52(6), 3651–3659. https://doi.org/10.1007/s13197-014-1437-0.

    CAS  Article  PubMed  Google Scholar 

  4. Altuna, F. I., Pettarin, V., & Williams, R. J. J. (2013). Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. Green Chemistry, 15(12), 3360–3366. https://doi.org/10.1039/c3gc41384e.

    CAS  Article  Google Scholar 

  5. ANVISA. (2010). RDC no 51 - 26 de novembro de 2010 - Regulamento técnico mercosul sobre migração em materiais, embalagens e equipamentos plásticos destinados a entrar em contato com alimentos. Brasília, BR: Ministério da Saúde. http://portal.anvisa.gov.br/documents/10181/2718376/RDC_51_2010_COMP.pdf/1e3cd7f0-d50c-4693-9db4-0082132dfb6e.

  6. ASTM International. (2016). E96 / E96M-16, standard test methods for water vapor transmission of materials. West Conshohocken: ASTM. https://doi.org/10.1520/E0096_E0096M-16.

    Google Scholar 

  7. ASTM International. (2018). D882-18 - standard test method for tensile properties of thin plastic sheeting. West Conshohocken: ASTM.. https://doi.org/10.1520/D0882-18.

    Google Scholar 

  8. Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Padmanabhan, S. C., Cummins, E., & Kerry, J. P. (2016). The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food and Bioprocess Technology, 9(10), 1661–1673. https://doi.org/10.1007/s11947-016-1745-7.

    CAS  Article  Google Scholar 

  9. Basavegowda, N., Mandal, T. K., & Baek, K.-H. (2019). Bimetallic and trimetallic nanoparticles for active food packaging applications: a review. Food and Bioprocess Technology, 13(1), 30–44. https://doi.org/10.1007/s11947-019-02370-3.

    CAS  Article  Google Scholar 

  10. Becaro, A. A., Puti, F. C., Panosso, A. R., Gern, J. C., Brandão, H. M., Correa, D. S., & Ferreira, M. D. (2016). Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles. Food and Bioprocess Technology, 9(4), 637–649. https://doi.org/10.1007/s11947-015-1656-z.

    CAS  Article  Google Scholar 

  11. Bolumar, T., Andersen, M. L., & Orlien, V. (2011). Antioxidant active packaging for chicken meat processed by high pressure treatment. Food Chemistry, 129(4), 1406–1412. https://doi.org/10.1016/j.foodchem.2011.05.082.

    CAS  Article  Google Scholar 

  12. Boussoum, M. O., & Belhaneche-Bensemra, N. (2012). Study and optimization of a soaking treatment to reduce migration from plasticized polyvinyl chloride. Journal of Applied Polymer Science, 124(2), 1241–1248. https://doi.org/10.1002/app.35141.

    CAS  Article  Google Scholar 

  13. Brostow, W., Lu, X., & Osmanson, A. T. (2018). Nontoxic bio-plasticizers for PVC as replacements for conventional toxic plasticizers. Polymer Testing, 69, 63–70. https://doi.org/10.1016/j.polymertesting.2018.03.007.

    CAS  Article  Google Scholar 

  14. Choe, E., & Min, D. B. (2007). Chemistry of deep-fat frying oils. Journal of Food Science, 72(5), R77–R86. https://doi.org/10.1111/j.1750-3841.2007.00352.x.

    CAS  Article  PubMed  Google Scholar 

  15. Choe, E., & Min, D. B. (2009). Mechanisms of antioxidants in the oxidation of foods. Comprehensive Reviews in Food Science and Food Safety, 8(4), 345–358. https://doi.org/10.1111/j.1541-4337.2009.00085.x.

    CAS  Article  Google Scholar 

  16. Chomkitichai, W., Chumyam, A., Rachtanapun, P., Uthaibutra, J., & Saengnil, K. (2014). Reduction of reactive oxygen species production and membrane damage during storage of ‘Daw’ longan fruit by chlorine dioxide. Scientia Horticulturae, 170, 143–149. https://doi.org/10.1016/j.scienta.2014.02.036.

    CAS  Article  Google Scholar 

  17. Cieśla, J., Koczańska, M., Narkiewicz-Michałek, J., Szymula, M., & Bieganowski, A. (2017). Effect of α-tocopherol on the properties of microemulsions stabilized by the ionic surfactants. Journal of Molecular Liquids, 236, 117–123. https://doi.org/10.1016/j.molliq.2017.04.015.

    CAS  Article  Google Scholar 

  18. Coaker, W. (2005). Flexible PVC. In C. E. Wilkes (Ed.), PVC Handbook (p. 723). Hanser.

  19. Coltro, L., Pitta, J. B., da Costa, P. A., Fávaro Perez, M. Â., de Araújo, V. A., & Rodrigues, R. (2014). Migration of conventional and new plasticizers from PVC films into food simulants: a comparative study. Food Control, 44, 118–129. https://doi.org/10.1016/j.foodcont.2014.03.058.

    CAS  Article  Google Scholar 

  20. Combs, G. F., & McClung, J. P. (2017a). Chapter 8 - vitamin E. In G. F. Combs & J. P. McClung (Eds.), The Vitamins (Fifth Edition) (pp. 207–242). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00008-3

  21. Combs, G. F., & McClung, J. P. (2017b). Chapter 10 - vitamin C. In G. F. Combs & J. P. McClung (Eds.), The Vitamins (Fifth Edition) (pp. 267–295). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00010-1

  22. Cooney, T.I. (2009). Epoxidised resins from natural renewable resources. University of Southern Queensland. Retrieved from https://core.ac.uk/download/pdf/11040721.pdf.

  23. Daniels, P. H. (2009). A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction. Journal of Vinyl and Additive Technology, 15(4), 219–223. https://doi.org/10.1002/vnl.20211.

    CAS  Article  Google Scholar 

  24. Feng, G., Hu, L., Ma, Y., Jia, P., Hu, Y., Zhang, M., Liu, C., & Zhou, Y. (2018). An efficient bio-based plasticizer for poly (vinyl chloride) from waste cooking oil and citric acid: Synthesis and evaluation in PVC films. Journal of Cleaner Production, 189, 334–343. https://doi.org/10.1016/j.jclepro.2018.04.085.

    CAS  Article  Google Scholar 

  25. Fenollar, O., García, D., Sánchez, L., López, J., & Balart, R. (2009). Optimization of the curing conditions of PVC plastisols based on the use of an epoxidized fatty acid ester plasticizer. European Polymer Journal, 45(9), 2674–2684. https://doi.org/10.1016/J.EURPOLYMJ.2009.05.029.

    CAS  Article  Google Scholar 

  26. Finten, G., Agüero, M. V., & Jagus, R. J. (2017). Citric acid as alternative to sodium hypochlorite for washing and disinfection of experimentally-infected spinach leaves. LWT - Food Science and Technology, 82, 318–325. https://doi.org/10.1016/j.lwt.2017.04.047.

    CAS  Article  Google Scholar 

  27. Gilbert, M. (2017). Chapter 3 - states of aggregation in polymers. In M. Gilbert (Ed.), Brydson’s Plastics Materials (Eighth Edition) (pp. 39–57). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-323-35824-8.00003-7

  28. Gilbert, M., & Patrick, S. (2017). Chapter 13 - poly(vinyl chloride). In M. Gilbert (Ed.), Brydson’s Plastics Materials (Eighth Edition) (pp. 329–388). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-323-35824-8.00013-X

  29. Glusker, J. P. (1980). Citrate conformation and chelation: enzymic implications. Accounts of Chemical Research, 13(10), 345–352. https://doi.org/10.1021/ar50154a002.

    CAS  Article  Google Scholar 

  30. Gupta, R., & Xie, H. (2018). Nanoparticles in daily life: applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 37(3), 209230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hvoslef, J., Klaeboe, P., Pettersson, B., Svensson, S., Koskikallio, J., & Kachi, S. (1971). Vibrational spectroscopic studies of L-ascorbic acid and sodium ascorbate. In Acta Chemica Scandinavica (Vol. 25, pp. 3043–3053). https://doi.org/10.3891/acta.chem.scand.25-3043

  32. Jaeger, S. R., Machín, L., Aschemann-Witzel, J., Antúnez, L., Harker, F. R., & Ares, G. (2018). Buy, eat or discard? A case study with apples to explore fruit quality perception and food waste. Food Quality and Preference, 69, 10–20. https://doi.org/10.1016/j.foodqual.2018.05.004.

    Article  Google Scholar 

  33. Jia, P., Zhang, M., Hu, L., Song, F., Feng, G., & Zhou, Y. (2018). A strategy for nonmigrating plasticized PVC modified with mannich base of waste cooking oil methyl ester. Scientific Reports, 8(1), 1589. https://doi.org/10.1038/s41598-018-19958-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Karmalm, P., Hjertberg, T., Jansson, A., & Dahl, R. (2009). Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer. Polymer Degradation and Stability, 94(12), 2275–2281. https://doi.org/10.1016/j.polymdegradstab.2009.07.019.

    CAS  Article  Google Scholar 

  35. Lerf, R., Zurbrügg, D., & Delfosse, D. (2010). Use of vitamin E to protect cross-linked UHMWPE from oxidation. Biomaterials, 31(13), 3643–3648. https://doi.org/10.1016/j.biomaterials.2010.01.076.

    CAS  Article  PubMed  Google Scholar 

  36. Li, Y. F., Xiao, M. Z., Wu, Z., Peng, K., Han, C. M., Xiang, W., & Dai, J. Y. (2016). Effects of epoxy/hardener stoichiometry on structures and properties of a diethanolamine-cured epoxy encapsulant. IOP Conference Series: Materials Science and Engineering, 137(1), 12012. http://stacks.iop.org/1757-899X/137/i=1/a=012012.

  37. Life Science Research Office. Evaluation of the health aspects of the tocopherols and q’-tocopheryl acetate as food ingredients. , Pub. L. No. PB262653 (1975). https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB262653.

  38. Life Science Research Office. Evaluation of the health aspects of citric acid. sodium citrate. potassium citrate. calcium citrate. ammonium citrate. triethyl citrate. isopropyl citrate. and stearyl citrate as food ingredients. , Pub. L. No. PB280954 (1977). FDA. https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB280954.

  39. Life Science Research Office. Evaluation of the health aspects of ascorbic acid, sodium ascorbate, calcium ascorbate, erythorbic acid, sodium erythorbate, and ascorbyl palmitate as food ingredients. , Pub. L. No. PB80128796 (1979). FDA. https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB80128796.

  40. Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169–175. https://doi.org/10.1016/S0260-8774(00)00154-0.

    Article  Google Scholar 

  41. Murata, M., Sugiura, M., Sonokawa, Y., Shimamura, T., & Homma, S. (2002). Properties of chlorogenic acid quinone: relationship between browning and the formation of hydrogen peroxide from a quinone solution. Bioscience, Biotechnology, and Biochemistry, 66(12), 2525–2530. https://doi.org/10.1271/bbb.66.2525.

    CAS  Article  PubMed  Google Scholar 

  42. Nguyen, X. Q., Sipek, M., & Nguyen, Q. T. (1992). Permeation of carbon dioxide and water vapour in plasticized poly(vinylchloride)-starch blends: anomalous behaviour. Polymer, 33(17), 3698–3705. https://doi.org/10.1016/0032-3861(92)90658-J.

    CAS  Article  Google Scholar 

  43. Pereira, G. G., Detoni, C. B., da Silva, T. L., Colomé, L. M., Pohlmann, A. R., & Guterres, S. S. (2015). α-Tocopherol acetate-loaded chitosan microparticles: stability during spray drying process, photostability and swelling evaluation. Journal of Drug Delivery Science and Technology, 30, Part A, 220–224. https://doi.org/10.1016/j.jddst.2015.10.018.

    CAS  Article  Google Scholar 

  44. Poerwono, H., Higashiyama, K., Kubo, H., Poernomo, A. T., Suharjono, Sudiana, I. K., et al. (2001). Citric acid. In H. G. Brittain (Ed.), Analytical Profiles of Drug Substances and Excipients (Vol. 28, pp. 1–76). Academic Press. https://doi.org/10.1016/S1075-6280(01)28002-1

  45. Reische, D., Lillard, D., & Eitenmiller, R. (2002). Antioxidants. Chapter 15. In C. C. Akoh & D. B. Mim (Eds.), Food Lipids. Chemistry, Nutrition and Biotechnology. New York: CRC Press.

    Google Scholar 

  46. Rodolfo Jr, A., & Mei, L. H. (2007). Mecanismos de degradação e estabilização térmica do PVC: a review. Polímeros, 17, 263–275. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282007000300018&nrm=iso.

  47. Schiller, M. (2015). 2 - Additional PVC additives. In M. Schiller (Ed.), PVC Stabilizers/Additive (pp. 115–231). Hanser. https://doi.org/10.3139/9781569905449.002

  48. Shi, R., Bi, J., Zhang, Z., Zhu, A., Chen, D., Zhou, X., Zhang, L., & Tian, W. (2008). The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydrate Polymers, 74(4), 763–770. https://doi.org/10.1016/j.carbpol.2008.04.045.

    CAS  Article  Google Scholar 

  49. Sikora, M., & Świeca, M. (2018). Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry, 239, 1160–1166. https://doi.org/10.1016/j.foodchem.2017.07.067.

    CAS  Article  PubMed  Google Scholar 

  50. Silva, R. C. O. D. (2016). Validation of HPLC-DAD methodology for determination of phenolics and biological activity in agro-industrial byproducts. M.Sc Dissertation, Graduate Program in Technology of Chemical and Biological Processes, Universidade Tecnológica Federal do Paraná, Brazil (in portuguese).

  51. Silverstein, R. M., Webster, F. X., & Kiemle, D. (2005). Spectrometric identification of organic compounds, 7th edition. Wiley. https://books.google.com.br/books?id=mQ8cAAAAQBAJ.

  52. Sin, L. T., Bee, S.-T., Tee, T.-T., Kadhum, A. A. H., Ma, C., Rahmat, A. R., & Veerasamy, P. (2013). Characterization of α-tocopherol as interacting agent in polyvinyl alcohol–starch blends. Carbohydrate Polymers, 98(2), 1281–1287. https://doi.org/10.1016/j.carbpol.2013.07.069.

    CAS  Article  PubMed  Google Scholar 

  53. Singh, G., Sachdeva, R., Rai, B., & Saini, G. S. S. (2017). Structure and vibrational spectroscopic study of alpha-tocopherol. Journal of Molecular Structure, 1144(Supplement C), 347–354. https://doi.org/10.1016/j.molstruc.2017.05.037.

    CAS  Article  Google Scholar 

  54. Suzuki, A. H., Botelho, B. G., Oliveira, L. S., & Franca, A. S. (2018). Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films. European Polymer Journal, 99, 142–149. https://doi.org/10.1016/j.eurpolymj.2017.12.014.

    CAS  Article  Google Scholar 

  55. Tas, C. E., Hendessi, S., Baysal, M., Unal, S., Cebeci, F. C., Menceloglu, Y. Z., & Unal, H. (2017). Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties. Food and Bioprocess Technology, 10(4), 789–798. https://doi.org/10.1007/s11947-017-1860-0.

    CAS  Article  Google Scholar 

  56. USDA. (2020). e-CFR (No. Subtitle B, Chapter I, Subchapter M, Part 205, Subpart G). Electronic Code of Federal Regulations. https://www.ecfr.gov/cgi-bin/textidx?c=ecfr&SID=9874504b6f1025eb0e6b67cadf9d3b40&rgn=div6&view=text&node=7:3.1.1.9.32.7&idno=7#se7.3.205_1605.

  57. Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M. D. C., Nilsen-Nygaard, J., Pettersen, M. K., & Freire, C. S. R. (2018). A concise guide to active agents for active food packaging. Trends in Food Science & Technology, 80, 212–222. https://doi.org/10.1016/j.tifs.2018.08.006.

    CAS  Article  Google Scholar 

  58. Vlček, T., & Petrović, Z. S. (2006). Optimization of the chemoenzymatic epoxidation of soybean oil. Journal of the American Oil Chemists' Society, 83(3), 247–252. https://doi.org/10.1007/s11746-006-1200-4.

    Article  Google Scholar 

  59. Wypych, G. (2015a). 11 - principles of stabilization. In PVC Degradation and Stabilization (Third ed., pp. 287–412). Boston: ChemTec Publishing. https://doi.org/10.1016/B978-1-895198-85-0.50013-3.

    Google Scholar 

  60. Wypych, G. (2015b). 10 - analytical methods. In PVC Degradation and Stabilization (Third Edition) (pp. 241–285). Boston: ChemTec Publishing. https://doi.org/10.1016/B978-1-895198-85-0.50012-1

  61. Xie, D.-L., Chen, D., Jiang, B., & Yang, C.-Z. (2000). Synthesis of novel compatibilizers and their application in PP/nylon-66 blends. I. Synthesis and characterization. Polymer, 41(10), 3599–3607. https://doi.org/10.1016/S0032-3861(99)00582-0.

    CAS  Article  Google Scholar 

  62. Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2018). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165–199. https://doi.org/10.1111/1541-4337.12322.

    Article  Google Scholar 

  63. Yin, B., Aminlashgari, N., Yang, X., & Hakkarainen, M. (2014). Glucose esters as biobased PVC plasticizers. European Polymer Journal, 58, 34–40. https://doi.org/10.1016/J.EURPOLYMJ.2014.06.008.

    CAS  Article  Google Scholar 

  64. Yohannan Panicker, C., Tresa Varghese, H., & Philip, D. (2006). FT-IR FT-Raman and SERS spectra of vitamin C. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65(3), 802–804. https://doi.org/10.1016/j.saa.2005.12.044.

    CAS  Article  Google Scholar 

  65. Zambrano-Zaragoza, M. L., Mercado-Silva, E., Del Real, L. A., Gutiérrez-Cortez, E., Cornejo-Villegas, M. A., & Quintanar-Guerrero, D. (2014). The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “red delicious” apples. Innovative Food Science & Emerging Technologies, 22, 188–196. https://doi.org/10.1016/j.ifset.2013.09.008.

    CAS  Article  Google Scholar 

  66. Zhao, Y., Jia, L., Liu, K., Gao, P., Ge, H., & Fu, L. (2016). Inhibition of calcium sulfate scale by poly (citric acid). Desalination, 392, 1–7. https://doi.org/10.1016/j.desal.2016.04.010.

    CAS  Article  Google Scholar 

  67. Zheng, T., Wu, Z., Xie, Q., Fang, J., Hu, Y., Lu, M., Xia, F., Nie, Y., & Ji, J. (2018). Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. Journal of Cleaner Production, 186, 1021–1030. https://doi.org/10.1016/j.jclepro.2018.03.175.

    CAS  Article  Google Scholar 

  68. Zhu, J., Li, R., Li, Z., Song, X., Li, C., Tang, H., & Li, Q. (2016). Measurement and correlation of isobaric vapor-liquid equilibria of methanol + tetrahydrofuran +1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at 101.3 kPa. Fluid Phase Equilibria, 423, 1–7. https://doi.org/10.1016/j.fluid.2016.04.012.

    CAS  Article  Google Scholar 

  69. Zuccarello, P., Oliveri Conti, G., Cavallaro, F., Copat, C., Cristaldi, A., Fiore, M., & Ferrante, M. (2018). Implication of dietary phthalates in breast cancer. A systematic review. Food and Chemical Toxicology, 118, 667–674. https://doi.org/10.1016/j.fct.2018.06.011.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

The authors would like to thank CNPq and CAPES for the financial support, BRASKEM for donating the PVC resin, and Professors Antonio Ferreira Ávila and Maria Irene Yoshida for the support with some of the analyzes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriana S. Franca.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A.H., Oliveira, L.S., Fante, C.A. et al. Use of Safe Substances as Additives for PVC Films and Their Effect on Enzymatic Browning of Gala Apples. Food Bioprocess Technol (2020). https://doi.org/10.1007/s11947-020-02474-1

Download citation

Keywords

  • Apple browning
  • Active packaging
  • Citric acid
  • Vitamin C
  • Vitamin E
  • PVC film