A Multiple Approach Combined with Portable Electronic Nose for Assessment of Post-harvest Sapota Contamination by Foodborne Pathogens

Abstract

Sapota (Manilkara Zapota) belongs to the Sapotaceae family and is one of the sweetest, delicious, and popular tropical fruits with high nutritional benefits. Due to its high water content (78%), it is easily damaged, which in turn reduces its shelf life. Also, significant post-harvest losses occur due to insufficient storage, poor handling, and transportation conditions, which also increase the microbial or pathogenic contamination. In this context, we have deployed an electronic nose for the first time to rapidly discriminate fresh sapota from bacterial contaminated sapota samples. The electronic nose response was varied from 0.1 to 2.9 V for sapota samples studied from day 1 to day 6. Fourier transform infrared spectra showed a gradual increase in the intensities of OH and H-O-H peaks at 3320 cm−1 and 1636 cm−1for these samples. Also, Staphylococcus bacteria were detected for the same set of sapota samples. Headspace GC-MS results of day 2, day 4, and day 6 sapota samples revealed the increasing trend in bacterial volatiles, namely ethanol, acetaldehyde, and isopropyl alcohol. The sensor data were provided as input to principal component analysis (PCA), Ward’s method analysis, and response surface methodology (RSM) for distinguishing fresh, half-contaminated, and fully contaminated sapota samples.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdul-Latef, L. M., & Ahmed, I. A.-M. (2017). Evaluation of some pesticide residues in fruits import by high performance liquid chromatography. Al-Mustansiriyah Journal of Science, 27(4). https://doi.org/10.23851/mjs.v27i4.34.

  2. Alam, K. Y., & Clark, D. P. (1989). Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. Journal of Bacteriology, 171(11), 6213–6217. https://doi.org/10.1128/jb.171.11.6213-6217.1989.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Ankalagi, N., Krishna, B., Banik, A. K., & Momin, M. C. M. (2017). Effect of packaging material on quality and storability of sapota (Manilkara achras (Mill.) Fosberg) var. Kalipatti. International Journal of Pure & Applied Bioscience, 5(6), 234–240. https://doi.org/10.18782/2320-7051.5044.

    Article  Google Scholar 

  4. Audrain, B., Farag, M. A., Ryu, C. M., & Ghigo, J. M. (2015). Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 39(2), 222–233. https://doi.org/10.1093/femsre/fuu013.

    CAS  Article  PubMed  Google Scholar 

  5. Baietto, M., & Wilson, A. D. (2015). Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors (Basel, Switzerland), 15(1), 899–931. https://doi.org/10.3390/s150100899.

    CAS  Article  PubMed Central  Google Scholar 

  6. Barth, M., Hankinson, T. R., Zhuang, H., & Breidt, F. (2009). Compendium of the microbiological spoilage of foods and beverages. Compendium of the Microbiological Spoilage of Foods and Beverages. https://doi.org/10.1007/978-1-4419-0826-1.

  7. Chauhan, O. P., Lakshmi, S., Pandey, A. K., Ravi, N., Gopalan, N., & Sharma, R. K. (2017). Non-destructive quality monitoring of fresh fruits and vegetables. Defence Life Science Journal, 2(2), 103. https://doi.org/10.14429/dlsj.2.11379.

    Article  Google Scholar 

  8. Chen, Q., Song, J., Bi, J., Meng, X., & Wu, X. (2017). Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC–MS coupled with E-nose. Food Research International., 105, 605–615. https://doi.org/10.1016/j.foodres.2017.11.054.

    CAS  Article  PubMed  Google Scholar 

  9. Cheng, H., Chen, J., Chen, S., Wu, D., Liu, D., & Ye, X. (2015). SC. FRIN, 72, 8–15. https://doi.org/10.1016/j.foodres.2015.03.006.

    CAS  Article  Google Scholar 

  10. Clark, D. P. (1989). The fermentation pathways of Escherichia coli. FEMS Microbiology Letters, 63(3), 223–234. https://doi.org/10.1016/0378-1097(89)90132-8.

    CAS  Article  Google Scholar 

  11. Concina, I., Falasconi, M., Gobbi, E., Bianchi, F., Musci, M., Mattarozzi, M., Pardo, M., Mangia, A., Careri, M., & Sberveglieri, G. (2009). Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control, 20(10), 873–880. https://doi.org/10.1016/j.foodcont.2008.11.006.

    CAS  Article  Google Scholar 

  12. Ezhilan, M., Nesakumar, N., Babu, K. J., & Srinandan, C. S. (2018). An electronic nose for Royal Delicious Apple Quality Assessment – a tri- layer approach. Food Research International, 109(2017), 44–51. https://doi.org/10.1016/j.foodres.2018.04.009.

    CAS  Article  PubMed  Google Scholar 

  13. Ezhilan, M., Nesakumar, N., Babu, K. J., Srinandan, C. S., Bosco, J., & Rayappan, B. (2019). Freshness assessment of broccoli using electronic nose. Measurement, 145, 735–743. https://doi.org/10.1016/j.measurement.2019.06.005.

    Article  Google Scholar 

  14. Feng, L., Zhang, M., Bhandari, B., & Guo, Z. (2018). Determination of postharvest quality of cucumbers using nuclear magnetic resonance and electronic nose combined with chemometric methods. Food and Bioprocess Technology, 11(12), 2142–2152. https://doi.org/10.1007/s11947-018-2171-9.

    CAS  Article  Google Scholar 

  15. Gruber, J., Nascimento, H. M., Yamauchi, E. Y., Li, R. W. C., Esteves, C. H. A., Rehder, G. P., Gaylarde, C. C., & Shirakawa, M. A. (2013). A conductive polymer based electronic nose for early detection of Penicillium digitatum in post-harvest oranges. Materials Science and Engineering C, 33(5), 2766–2769. https://doi.org/10.1016/j.msec.2013.02.043.

    CAS  Article  PubMed  Google Scholar 

  16. Health Protection Agency (HPA). (2009). Guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. Health Protection Agency, London., (November), 33.

  17. Hong, X., & Wang, J. (2015). Use of electronic nose and tongue to track freshness of cherry tomatoes squeezed for juice consumption: comparison of different sensor fusion approaches. Food and Bioprocess Technology, 8(1), 158–170. https://doi.org/10.1007/s11947-014-1390-y.

    Article  Google Scholar 

  18. Huang, X. C., Yuan, Y. H., Wang, X. Y., Jiang, F. H., & Yue, T. L. (2015). Application of electronic nose in tandem with chemometric analysis for detection of alicyclobacillus acidoterrestris-spawned spoilage in apple juice beverage food and bioprocess technology. Food and Bioprocess Technology, 8(6), 1295–1304. https://doi.org/10.1007/s11947-015-1491-2.

    CAS  Article  Google Scholar 

  19. Huang, L., Meng, L., Zhu, N., & Wu, D. (2017). Postharvest Biology and Technology A primary study on forecasting the days before decay of peach fruit using near-infrared spectroscopy and electronic nose techniques. Postharvest Biology and Technology, 133, 104–112. https://doi.org/10.1016/j.postharvbio.2017.07.014.

    CAS  Article  Google Scholar 

  20. Hussain, A., Pu, H., & Sun, D. W. (2018). Innovative nondestructive imaging techniques for ripening and maturity of fruits – a review of recent applications. Trends in Food Science and Technology, 72(2017), 144–152. https://doi.org/10.1016/j.tifs.2017.12.010.

    CAS  Article  Google Scholar 

  21. Khatri, P. K., & Sharma, S. (2018). Microbial examination for spoil fruits and vegetables and its isolation, identification, and antimicrobial sensitivity pattern. International Journal of Current Microbiology and Applied Sciences, 7(12), 2671–2679. https://doi.org/10.20546/ijcmas.2018.712.303.

    CAS  Article  Google Scholar 

  22. Kusumiyati, Hadiwijaya, Y., & Elisa Putri, I. (2018). Determination of water content of intact sapodilla using near infrared spectroscopy. IOP Conference Series: Earth and Environmental Science, 207(1). https://doi.org/10.1088/1755-1315/207/1/012047.

  23. Laohakunjit, N., Kerdchoechuen, O., Matta, F. B., Silva, J. L., & Holmes, W. E. (2007). Postharvest survey of volatile compounds in five tropical fruits using headspace-solid phase microextraction (HS-SPME). HortScience, 42(2), 309–314.

    CAS  Article  Google Scholar 

  24. Lasekan, O., & Yap, S. P. (2018). Characterization of the aroma compounds in fresh and dried sapodilla (Manikara zapota, L.) by the application of aroma extract dilution analysis. CYTA - Journal of Food, 16(1), 801–806. https://doi.org/10.1080/19476337.2018.1485748.

    CAS  Article  Google Scholar 

  25. Lebrun, M., Plotto, A., Goodner, K., Ducamp, M., & Baldwin, E. (2008). Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography, 48, 122–131. https://doi.org/10.1016/j.postharvbio.2007.09.010

  26. Létoffé, S., Audrain, B., Bernier, S. P., Delepierre, M., & Ghigo, J. (2014). Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by, 5(1), 1–12. https://doi.org/10.1128/mBio.00944-13.Editor

  27. Li, Q., Yu, X., Xu, L., & Gao, J. (2017). Novel method for the producing area identification of Zhongning Goji berries by electronic nose, 221, 1113–1119. https://doi.org/10.1016/j.foodchem.2016.11.049

  28. Madani, B., Mirshekari, A., Yahia, E., & Golding, J. B. (2018). Sapota ( Manilkara achras Forb.): factors influencing fresh and processed fruit quality. Horticultural Reviews (Vol. 45). John Wiley & Sons.

  29. Maiti, R., Thakur, A. K., Gupta, A., & Mandal, D. (2019). Chapter 6 Post harvest management of agricultural produce. American Academic Press, USA.

  30. Martínez Gila, D. M., Gámez García, J., Bellincontro, A., Mencarelli, F., & Gómez Ortega, J. (2020). Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biology and Technology, 160(2019), 111058. https://doi.org/10.1016/j.postharvbio.2019.111058.

    CAS  Article  Google Scholar 

  31. Nesakumar, N., Baskar, C., Kesavan, S., Bosco, J., & Rayappan, B. (2018). Analysis of moisture content in beetroot using fourier transform infrared spectroscopy and by principal component analysis. Scientific Reports, (February), 1–10. https://doi.org/10.1038/s41598-018-26243-5

  32. Nishi, K., Isobe, S.-I., Zhu, Y., & Kiyama, R. (2015). Fluorescence-based bioassays for the detection and evaluation of food materials. Sensors, 15(10), 25831–25867. https://doi.org/10.3390/s151025831.

    CAS  Article  PubMed  Google Scholar 

  33. Oana, A., Vicu, M., Stroe, Ġ., & Adrian, G. (2015). Tentative application of an electronic nose to the study of the parentage of Romanian grape varieties. Sarba and Alb Aromat, 6, 110–117. https://doi.org/10.1016/j.aaspro.2015.08.046.

    Article  Google Scholar 

  34. Pan, L., Zhang, W., Zhu, N., Mao, S., & Tu, K. (2014). Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry. Food Research International, 62, 162–168. https://doi.org/10.1016/j.foodres.2014.02.020.

    CAS  Article  Google Scholar 

  35. Panda, S. K., Sahu, U. C., Behera, S. K., & Ray, R. C. (2014). Fermentation of sapota (Achras sapota Linn.) fruits to functional wine. Nutrafoods, 13(4), 179–186. https://doi.org/10.1007/s13749-014-0034-1.

    CAS  Article  Google Scholar 

  36. Saevels, S., Lammertyn, J., Berna, A. Z., Veraverbeke, E. A., Di Natale, C., & Nicolaï, B. M. (2004). An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life. Postharvest Biology and Technology, 31(1), 9–19. https://doi.org/10.1016/S0925-5214(03)00129-7.

    CAS  Article  Google Scholar 

  37. Sanaeifar, A., Saeid, S., Ghasemi-varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82, 105–114. https://doi.org/10.1016/j.measurement.2015.12.041.

    Article  Google Scholar 

  38. Siddiqui, M. W., Longkumer, M., Ahmad, M. S., Barman, K., Thakur, P. K., & Kabir, J. (2014). Postharvest biology and technology of sapota: a concise review. Acta Physiologiae Plantarum, 36(12), 3115–3122. https://doi.org/10.1007/s11738-014-1696-4.

    CAS  Article  Google Scholar 

  39. Silva, N. F. D., Magalhães, J. M. C. S., Freire, C., & Delerue-Matos, C. (2018). Electrochemical biosensors for Salmonella: state of the art and challenges in food safety assessment. Biosensors and Bioelectronics, 99(2017), 667–682. https://doi.org/10.1016/j.bios.2017.08.019.

    CAS  Article  PubMed  Google Scholar 

  40. The center for food safety, food and environmental hygiene department. (2014). Microbiological guidelines for food: for ready-to-eat food in general and specific food items. https://www.cdc.gov/foodsafety/foodborne-germs.html.

  41. Torri, L., Sinelli, N., & Limbo, S. (2010). Postharvest Biology and Technology shelf life evaluation of fresh-cut pineapple by using an electronic nose. Postharvest Biology and Technology, 56(3), 239–245. https://doi.org/10.1016/j.postharvbio.2010.01.012.

    CAS  Article  Google Scholar 

  42. Uekane, T. M., Nicolotti, L., Griglione, A., Bizzo, H. R., Rubiolo, P., Bicchi, C., Rocha-Leão, M. H. M., & Rezende, C. M. (2017). Studies on the volatile fraction composition of three native Amazonian-Brazilian fruits: murici (Byrsonima crassifolia L., Malpighiaceae), bacuri (Platonia insignis M., Clusiaceae), and sapodilla (Manilkara sapota L., Sapotaceae). Food Chemistry, 219, 13–22. https://doi.org/10.1016/j.foodchem.2016.09.098.

    CAS  Article  PubMed  Google Scholar 

  43. Vargas, E., Ruiz, M. A., Campuzano, S., Reviejo, A. J., & Pingarrón, J. M. (2016). Non-invasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor. Analytica Chimica Acta, 914, 53–61. https://doi.org/10.1016/j.aca.2016.02.015.

    CAS  Article  PubMed  Google Scholar 

  44. Wang, C. (2020). A review on the potential reuse of functional polysaccharides extracted from the by-products of mushroom processing. Food and Bioprocess Technology, 13(2), 217–228. https://doi.org/10.1007/s11947-020-02403-2.

    CAS  Article  Google Scholar 

  45. Wen, T., Zheng, L., Dong, S., Gong, Z., Sang, M., & Long, X. (2019). Postharvest Biology and Technology Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis ( Hendel ) based on electronic nose. Postharvest Biology and Technology, 147(2018), 156–165. https://doi.org/10.1016/j.postharvbio.2018.09.017.

    Article  Google Scholar 

  46. Zhang, H., Wang, J., Ye, S., & Chang, M. (2012). Application of electronic nose and statistical analysis to predict quality indices of peach. Food and Bioprocess Technology, 5(1), 65–72. https://doi.org/10.1007/s11947-009-0295-7.

    Article  Google Scholar 

  47. Zhu, H., Gonzalez, R., & Bobik, T. A. (2011). Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli. Applied and Environmental Microbiology, 77(18), 6441–6450. https://doi.org/10.1128/AEM.05358-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge SASTRA Deemed University, Thanjavur for extending infrastructure support to carry out the study.

Funding

Ms. Madeshwari Ezhilan thanks Council of Scientific and Industrial Research, New Delhi, India, for the financial support (09/1095(0044)/19-EMR-I). The authors are grateful to the Department of Biotechnology and the Department of Science and Technology - Science and Engineering Research Board, Government of India, New Delhi, for their financial support (BT/PR10437/PFN/20/779/2013) and (ECR/2016/001805), respectively. They also wish to express their sincere thanks to the Department of Science and Technology, Government of India, New Delhi, India, for their financial support (SR/FST/ET-II/2018/221).

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Bosco Balaguru Rayappan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ezhilan, M., Nesakumar, N., Babu, K.J. et al. A Multiple Approach Combined with Portable Electronic Nose for Assessment of Post-harvest Sapota Contamination by Foodborne Pathogens. Food Bioprocess Technol 13, 1193–1205 (2020). https://doi.org/10.1007/s11947-020-02473-2

Download citation

Keywords

  • Electronic nose
  • Sapota
  • Bacterial contamination
  • HS-GC-MS analysis
  • Cluster analysis