Skip to main content
Log in

Production of Propolis Extract Microparticles with Concentrated Pea Protein for Application in Food

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objectives of this study were to produce microparticles of propolis extract (PE), using concentrated pea protein (CPP) at different concentrations as the encapsulation wall material, and to analyze its physical, morphological, and thermal stability properties. In addition, the microparticles with the highest encapsulation efficiency were incorporated into a cake to verify their impact on the physical characteristics, phenolic compounds content, antioxidant activity, and sensory attributes of cakes. Of the three formulations of CPP tested (2, 4, and 6% weight: volume), microparticles with 2% CPP showed the highest encapsulation efficiency. All the microparticles presented similar morphology, with different roughness and sizes, and with superior thermal stability in relation to the pure PE. The 2% CPP formulation was added during the making of the cake. There was a reduction in the total content of phenolic compounds (< 49%) and in the antioxidant activity (< 44%) of the microparticles after baking. The fortified cake resulted in characteristics of flavor, odor, color, and texture similar to those of the control cake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • A.O.A.C. (1995). Official method of analysis of AOAC International (16th ed.). Virginia: AOAC International.

    Google Scholar 

  • Andrade, J. K. S., Denadai, M., De Oliveira, C. S., Nunes, M. L., & Narain, N. (2017). Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Research International, 101, 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Bajaj, P. R., Tang, J., & Sablani, S. S. (2015). Pea protein isolates: novel wall materials for microencapsulating flaxseed oil. Food Bioprocess and Technolology, 8(12), 2418–2428.

    Article  CAS  Google Scholar 

  • Bernardi, S., Favaro-Trindade, C. S., Trindade, M. A., Balieiro, J. C. C., Cavenaghi, A. D., & Contreras-Castillo, C. J. (2013). Italian - type salami with propolis as antioxidant. Italian Journal of Food Science, 25, 433–440.

    Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebens Wiss Technology (LWT), 28(1), 25–30.

    Article  CAS  Google Scholar 

  • BRASIL (2001). Ministério da Agricultura, Pecuária e do Abastecimento. Instrução Normativa n° 3, de 19 de janeiro de 2001. Aprova os regulamentos Técnicos de Identidade e Qualidade de Apitoxina, Cera de Abelha, Geléia Real, Geléia Real Liofilizada, Pólen Apícola, Própolis e Extrato de Própolis, conforme consta dos Anexos desta Instrução Normativa. Diário Oficial da União de 23/01/2001, Seção 1, Página 18.

  • Bruschi, M. L., Cardoso, M. L. C., Lucchesi, M. B., & Gremião, M. P. D. (2003). Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. International Journal of Pharmaceutics, 264(1-2), 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Bufalo, M. C., Ferreira, I., Costa, G., Francisco, V., Liberal, J., Cruz, M. T., & Sforcin, J. M. (2013). Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-kappaB and MAPK activation in macrophages. Journal of Ethnopharmacology, 149(1), 84–92.

    Article  CAS  PubMed  Google Scholar 

  • Busch, V. M., Pereyra-Gonzalez, A., Segatin, N., Santagapita, P. R., Ulrih, N. P., & Buera, M. P. (2017). Propolis encapsulation by spray drying: characterization and stability. Lebens Wiss Techn (LWT), 75, 227–235.

    Article  CAS  Google Scholar 

  • Çam, M., Içyer, N. C., & Erdogan, F. (2014). Pomegranate peel phenolics: microencapsulation, storage stability and potential ingredient for functional food development. Lebens Wiss Technology (LWT), 55(1), 117–123.

    Article  CAS  Google Scholar 

  • Chao, D., Jung, S., & Aluko, R. E. (2018). Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science and Emerging Technologies, 45, 179–185.

    Article  CAS  Google Scholar 

  • Costa, A. M. M., Nunes, J. C., Lima, B. N. B., Pedrosa, C., Calado, V., Torres, A. G., & Pierucci, A. P. T. R. (2015). Effective stabilization of CLA by microencapsulation in pea protein. Food Chemistry, 168, 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Da Rosa, C. G., Borges, C. D., Zambiazi, R. C., Rutz, J. K., Da Luz, S. R., Krumreich, F. D., Benvenutti, E. V., & Nunes, M. R. (2014). Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). Lebens Wiss Technology (LWT), 58(2), 527–533.

    Article  CAS  Google Scholar 

  • da Silva, F. C., Favaro-Trindade, C. S., De Alencar, S. M., Thomazini, M., & Balieiro, J. C. C. (2011). Physicochemical properties, antioxidant activity and stability of spray-dried própolis. Journal of ApiProduct and ApiMedical Science, 3(2), 94–100.

    Article  Google Scholar 

  • da Silva, F. C., Da Fonseca, C. R., De Alencar, S. M., Thomazini, M., Balieiro, J. C. D. C., Pittia, P., & Favaro-Trindade, C. S. (2013). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum arabic and OSA starch-based carrier systems. Food and Bioproducts Processing, 91(1), 28–36.

    Article  CAS  Google Scholar 

  • do Nascimento, T. G., da Silva, P. F., Azevedo, L. F., da Rocha, L. G., de Moraes Porto, I. C., Moura TF, L. E., Basílio-Júnior, I. D., Grillo, L. A., Dornelas, C. B., Fonseca, E. J., de Jesus Oliveira, E., Zhang, A. T., & Watson, D. G. (2016). Polymeric nanoparticles of Brazilian red propolis extract: preparation, characterization, antioxidant and Leishmanicidal activity. Nanoscale Research Letters, 11(1), 301. https://doi.org/10.1186/s11671-016-1517-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Reis, A. S., Diedrich, C., De Moura, C., Pereira, D., Almeida, J. D. F., Da, S., & e al, L. D. (2017). Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at 15 °C. Lebens Wiss Technology (LWT), 76(B), 306–313.

    Article  CAS  Google Scholar 

  • Elbaz, N. M., Khalil, I. A., Abd-rabou, A. A., & El-Sherbiny, I. M. (2016). Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. International Journal of Biological Macromolecules, 92, 254–269.

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasi, P. N., Indrani, D., Jena, B. S., & Anandharamakrishnan, C. (2014). Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality. Journal of the Science of Food and Agriculture, 94(6), 1116–1123.

    Article  CAS  PubMed  Google Scholar 

  • Filomeni, G., Graziani, I., De Zio, D., Dini, L., Centonze, D., Rotilio, G., et al. (2012). Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease. Neurobiology of Aging, 33(4), 767–785.

    Article  CAS  PubMed  Google Scholar 

  • Franchin, M., Freires, I. A., Lazarini, J. G., Nani, B. D., Da Cunha, M. G., Colón, D. F., de Alencar, S. M., & Rosalen, P. L. (2017). The use of Brazilian propolis for discovery and development of novel anti-inflammatory drugs. European Journal of Medicinal Chemistry, 154, 49–55.

    Google Scholar 

  • Gharsallaoui, A., Saurel, R., Chambin, O., & Voilley, A. (2012). Pea (Pisum sativum, L.) protein isolate stabilized emulsions: a novel system for microencapsulation of lipophilic ingredients by spray drying. Food Bioprocess Technology, 5(6), 2211–2221.

    Article  CAS  Google Scholar 

  • Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-estaca, J., Gavara, R., & Hernández-Muñoz, P. (2015). Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science and Emerging Technologies, 29, 302–307.

    Article  CAS  Google Scholar 

  • Guerin, J., Petit, J., Burgain, J., Borges, F., Bhandari, B., Perroud, C., Desobry, S., Scher, J., & Gaiani, C. (2017). Lactobacillus rhamnosus GG encapsulation by spray-drying: milk proteins clotting control to produce innovative matrices. Journal of Food Engineering, 193, 10–19.

    Article  CAS  Google Scholar 

  • Hoffmann, J. F., Zandoná, G. P., Santos, P. S. D., Dallmann, C. M., Madruga, F. B., Rombaldi, C. V., & Chaves, F. C. (2017). Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar. Food Chemistry, 237, 638–644.

    Article  CAS  PubMed  Google Scholar 

  • Jansen-Alves, C., Fernandes, K. F., Crizel-Cardozo, M. M., Krumreich, F. D., Borges, C. D., & Zambiazi, R. C. (2018). Microencapsulation of propolis in protein matrix using spray drying for application in food systems. Food and Bioprocess Technology, 11(7), 1422–1436.

    Article  CAS  Google Scholar 

  • Jansen-Alves, C., Maia, D. S. V., Krumreich, F. D., Crizel-Cardoso, M. M., Fioravante, J. B., da Silva, W. P., Borges, C. D., & Zambiazi, R. C. (2019). Propolis microparticles produced with pea protein: characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocolloids, 87, 703–711.

    Article  CAS  Google Scholar 

  • Jia, Z., Dumont, M.-J., & Orsat, V. (2016). Encapsulation of phenolic compounds presentin plants using protein matrices. Food Bioscience, 15, 87–104.

    Article  CAS  Google Scholar 

  • Jing, D., Zhen-Zhen, G., Ze, X., Bo, Z., Ying, Z., & Li, C.-M. (2014). Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Drying Technology, 32, 1157–1166.

    Article  CAS  Google Scholar 

  • Joye, I. J., & Mcclements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinionin Colloid InterfaceScience, 19(5), 417–427.

    Article  CAS  Google Scholar 

  • Lin, M., Tay, S. H., Yang, H., Yang, B., & Li, H. (2017). Formulation optimization of lecithin-enhanced pickering emulsions stabilized by chitosan nanoparticles for hesperidin encapsulation. Food Hydrocolloids, 69, 440–449.

    Article  CAS  Google Scholar 

  • Mascheroni, E., Fuenmayor, C. A., Cosio, M. S., Di Silvestro, G., Piergiovanni, L., Mannino, S., & Schiraldi, A. (2013). Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydrate Polymers, 98(1), 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Mendanha, D. V., Ortiz, S. E. M., Favaro-Trindade, C. S., Mauri, A., Monterrey-Quintero, E. S., & Thomazini, M. (2009). Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Research International, 42(8), 1099–1104.

    Article  CAS  Google Scholar 

  • Nooshkam, M., Varidi, M., & Bashash, M. (2019). Review. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 275, 644–660.

    Article  CAS  PubMed  Google Scholar 

  • Pang, S. F., Yusoff, M. M., & Gimbun, J. (2014). Assessment of phenolic compounds stability and retention during spray drying of Orthosiphon stamineus extracts. Food Hydrocolloids, 37, 159–165.

    Article  CAS  Google Scholar 

  • Pasrija, D., Ezhilarasi, P. N., Indrani, D., & Anandharamakrishnan, C. (2015). Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. Lebens Wiss Technology (LWT), 64(1), 289–296.

    Article  CAS  Google Scholar 

  • Pellati, F., Orlandinia, G., Pinetti, D., & Benvenuti, S. (2011). HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. Journal of Pharmaceutical and Biomedical Analysis, 55(5), 934–948.

    Article  CAS  PubMed  Google Scholar 

  • Quirino Lacerda, E. C., De Araújo, C. V. M., Monteiroc, M., Finotellid, P. V., Guedes Torresa, A., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510.

    Article  CAS  Google Scholar 

  • Rocha, G. A., Fávaro-Trindade, C. S., & Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food and Bioproducts Processing, 90(1), 37–42.

    Article  CAS  Google Scholar 

  • Silva, J. C., Rodrigues, S., Feás, X., & Estevinho, L. M. (2012). Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food and Chemical Toxicology, 50(5), 1790–1795.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Souza, J.P.B., Tacon, L.A., Correia, C. C., Bastos, J. K., & Freitas, L.A.P. (2007). Spray-dried propolis extract, II: Prenylated components of green propolis. Pharmazie, 62, 488–492.

  • Spinelli, S., Conte, A., Lecce, L., Incoronato, A. L., & Nobile, A. D. M. (2015). Microencapsulated propolis to enhance the antioxidant properties of fresh fish burgers. Journal of Food Process Engineering, 38(6), 527–535.

    Article  CAS  Google Scholar 

  • Szliszka, E., Czuba, Z. P., Domino, M., Mazur, B., Zydowicz, G., & Krol, W. (2009). Ethanolic extract of propolis (EEP) enhances the apoptosis- inducing potential of TRAIL in cancer cells. Moleculas, 14(2), 738–754.

    Article  CAS  Google Scholar 

  • Trifković, K. T., Milašinović, N. Z., Djordjević, V. B., Krušić, M. T., Knežević-Jugović, Z. D., Nedović, V. A., et al. (2014). Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydrate Polymers, 111, 901–907.

    Article  CAS  PubMed  Google Scholar 

  • Von Staszewski, M., Jara, F. L., Ruiz, A. L. T. G., Jagus, R. J., Carvalho, J. E., & Pilosof, A. M. R. (2012). Nanocomplex formation between b-lactoglobulin or caseino macropeptide and green tea polyphenols: impact on protein gelation and polyphenols antiproliferative activity. Journal of Functional Foods, 4(4), 800–809.

    Article  CAS  Google Scholar 

  • Xiaojing, L., Na, J., Chao, Q., Mingtao, X., Liu, X., & Qingjie, S. (2015). The effect of peanut protein nanoparticles on characteristics of protein- and starch-based nanocomposite films: a comparative study. Industrial Crops and Products, 77, 565–574.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES for granting the doctoral scholarship, FAPERGS for financial support, and CEME-SUL (FURG) for the analysis of SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Jansen-Alves.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen-Alves, C., Krumreich, F.D., Zandoná, G.P. et al. Production of Propolis Extract Microparticles with Concentrated Pea Protein for Application in Food. Food Bioprocess Technol 12, 729–740 (2019). https://doi.org/10.1007/s11947-019-2246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-2246-2

Keywords

Navigation