Skip to main content
Log in

Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this work, optimal pulsed electric fields-assisted extraction conditions were selected in order to intensify the extractability of polyphenol compounds with high antioxidant activity from potato peels. Effectiveness of PEF as cell disintegration technique was confirmed using both impedance measurements and scanning electron microscopy (SEM). Solid-liquid extraction (SLE) for both untreated and PEF pre-treated potato peels was optimized to determine the most effective solvent concentration (0–100% ethanol in water) as well as extraction temperature (20–50 °C) and time (30–240 min) using response surface methodology. Total phenolic compounds (TPC) and antioxidant activity (DPPH) of the extracts were determined. Results showed that the application of PEF prior to SLE has the potential to reduce duration, temperature, and consumption of solvent to achieve the same recovery yield of phenolic compounds. Under optimized conditions (54% ethanol, 233 min, and 50 °C for SLE; 52% ethanol, 230 min, and 50 °C for PEF), the extracts obtained from PEF pre-treated samples showed higher total phenolics yield (10%) and antioxidant activity (9%) as compared to the control extraction. Finally, HPLC-DAD analysis revealed the major classes of the detected polyphenolic compounds as chlorogenic, caffeic, syringic, protocatechuic, and p-coumaric acids, and no significant degradation of individual polyphenols due to PEF application was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M. F., & Verardo, V. (2016). Phenolic compounds in the potato and its byproducts: an overview. International Journal of Molecular Sciences, 17(6). https://doi.org/10.3390/ijms17060835.

  • Amado, I. R., Franco, D., Sánchez, M., Zapata, C., & Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165, 290–299.

    Article  CAS  PubMed  Google Scholar 

  • Anastácio, A., & Carvalho, I. S. (2013). Phenolics extraction from sweet potato peels: key factors screening through a Placket–Burman design. Industrial Crops and Products, 43, 99–105.

    Article  CAS  Google Scholar 

  • Asavasanti, S., Ersus, S., Ristenpart, W., Stroeve, P., & Barrett, D. M. (2010). Critical electric field strengths of onion tissues treated by pulsed electric fields. Journal of Food Science, 75(7), E433–E443.

    Article  CAS  PubMed  Google Scholar 

  • Barba, F. J., Brianceau, S., Turk, M., Boussetta, N., & Vorobiev, E. (2015). Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food & Bioprocess Technology, 8(5), 1139–1148.

    Article  CAS  Google Scholar 

  • Barbosa-Pereira, L., Guglielmetti, A., & Zeppa, G. (2018). Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food & Bioprocess Technology, 11(4), 818–835.

    Article  CAS  Google Scholar 

  • Bobinaitė, R., Pataro, G., Lamanauskas, N., Šatkauskas, S., Viškelis, P., & Ferrari, G. (2015). Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology, 52(9), 5898–5905.

    Article  CAS  PubMed  Google Scholar 

  • Boussetta, N., Vorobiev, E., Le, L., Cordin-Falcimaigne, A., & Lanoisellé, J.-L. (2012). Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT-Food Science and Technology, 46(1), 127–134.

    Article  CAS  Google Scholar 

  • Carullo, D., Abera, B. D., Casazza, A. A., Donsì, F., Perego, P., Ferrari, G., & Pataro, G. (2018). Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Research, 31, 60–69.

    Article  Google Scholar 

  • Chang, K. (2011). Polyphenol antioxidants from potato peels: extraction optimization and application to stabilizing lipid oxidation in foods. In Proceedings of the National Conference on Undergraduate Research (NCUR). New York, NY, USA.

  • Donsì, F., Ferrari, G., & Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2(2), 109–130.

    Article  CAS  Google Scholar 

  • El Gharras, H. (2009). Polyphenols: food sources, properties and applications - a review. International Journal of Food Science and Technology, 44(12), 2512–2518.

    Article  CAS  Google Scholar 

  • FAOSTAT (2017) Data of crops production in the World and Europe. Data Division. Available online: http://www.fao.org/faostat/en/#data/QC. Accessed 01 April 2019.

  • Friedman, M. (1997). Chemistry, biochemistry, and dietary role of potato polyphenols. A review. Journal of Agricultural and Food Chemistry, 45(5), 1523–1540.

    Article  Google Scholar 

  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26(2), 68–87.

    Article  CAS  Google Scholar 

  • Hossain, M. B., Tiwari, B. K., Gangopadhyay, N., O’Donnell, C. P., Brunton, N. P., & Rai, D. K. (2014). Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrasonics Sonochemistry, 21(4), 1470–1476.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H. W., Hsu, C. P., Yang, B. B., & Wang, C. Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology, 33(1), 54–62.

    Article  CAS  Google Scholar 

  • Kanatt, S. R., Chander, R., Radhakrishna, P., & Sharma, A. (2005). Potato peel extract a natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. Journal of Agricultural and Food Chemistry, 53(5), 1499–1504.

    Article  CAS  Google Scholar 

  • Lebovka, N., Bazhal, M., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54(4), 337–346.

    Article  Google Scholar 

  • López, N., Puértolas, E., Hernández-Orte, P., Álvarez, I., & Raso, J. (2009). Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of cabernet sauvignon freshly fermented model wines obtained after different maceration times. LWT-Food Science and Technology, 42(7), 1225–1231.

    Article  CAS  Google Scholar 

  • Luengo, E., Álvarez, I., & Raso, J. (2013). Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science & Emerging Technologies, 17, 79–84.

    Article  CAS  Google Scholar 

  • Luengo, E., Álvarez, I., & Raso, J. (2014). Improving carotenoid extraction from tomato waste by pulsed electric fields. Frontiers in Nutrition, 1, 1–10.

    Article  CAS  Google Scholar 

  • Onyeneho, S. N., & Hettiarachchy, N. S. (1993). Antioxidant activity, fatty acids and phenolic acids compositions of potato peels. Journal of the Science of Food and Agriculture, 62(4), 345–350.

    Article  CAS  Google Scholar 

  • Paleologou, I., Vasiliou, A., Grigorakis, S., & Makris, D. P. (2016). Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Conversion and Biorefinery, 6(3), 289–299.

    Article  CAS  Google Scholar 

  • Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2014). Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Research International, 65, 337–343.

    Article  CAS  Google Scholar 

  • Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2016). Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry, 192, 842–848.

    Article  CAS  PubMed  Google Scholar 

  • Pataro, G., Ferrari, G., & Donsì, F. (2011). Mass transfer enhancement by means of electroporation. In J. Markoš (Ed.), Mass transfer in chemical engineering processes (pp. 151–176). Rijeka: InTech ISBN 978-953-307-619-5.

    Google Scholar 

  • Pataro, G., Bobinaitė, R., Bobinas, Č., Šatkauskas, S., Raudonis, R., Visockis, M., Ferrari, G., & Viškelis, P. (2017). Improving the extraction of juice and anthocyanins from blueberry fruits and their by-products by application of pulsed electric fields. Food Bioprocess Technology, 10(9), 1595–1605. https://doi.org/10.1007/s11947-017-1928-x.

    Article  CAS  Google Scholar 

  • Pataro, G., Carullo, D., Siddique, M. A. B., Falcone, M., Donsì, F., & Ferrari, G. (2018). Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling. Journal of Food Engineering, 233, 65–73.

    Article  CAS  Google Scholar 

  • Patra, M., Salonen, E., Terama, E., Vattulainen, I., Faller, R., Lee, B. W., Holopainen, J., & Karttunen, M. (2006). Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophysical Journal, 90(4), 1121–1135.

    Article  CAS  PubMed  Google Scholar 

  • Pillet, F., Formosa-Dague, C., Baaziz, H., Dague, E., & Rols, M. P. (2016). Cell wall as a target for bacteria inactivation by pulsed electric fields. Scientific Reports, 6, 19778. https://doi.org/10.1038/srep19778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puértolas, E., Cregenzán, O., Luengo, E., Álvarez, I., & Raso, J. (2013). Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry, 136(3-4), 1330–1336.

    Article  CAS  PubMed  Google Scholar 

  • Rapisarda, P., Tomaino, A., Lo Cascio, R., Bonina, F., De Pasquale, A., & Saija, A. (1999). Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. Journal of Agricultural and Food Chemistry, 47(11), 4718–4723.

    Article  CAS  PubMed  Google Scholar 

  • Roselló-Soto, E., Parniakov, O., Deng, Q., Patras, A., Koubaa, M., Grimi, N., Boussetta, N., Tiwari, B. K., Vorobiev, E., Lebovka, N., & Barba, F. J. (2016). Application of non-conventional extraction methods: toward a sustainable and green production of valuable compounds from mushrooms. Food Engineering Reviews, 8(2), 214–234.

    Article  CAS  Google Scholar 

  • Samarin, A. M., Poorazarang, H., Hematyar, N., & Elhamirad, A. (2012). Phenolics in potato peels: extraction and utilization as natural antioxidants. World Applied Sciences Journal, 18, 191–195.

    CAS  Google Scholar 

  • Schieber, A., & Saldaña, M. D. (2009). Potato peels: a source of nutritionally and pharmacologically interesting compounds-a review. Food, 3, 23–29.

    Google Scholar 

  • Singh, P. P., & Saldaña, M. D. (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Research International, 44(8), 2452–2458.

    Article  CAS  Google Scholar 

  • Wijngaard, H. H., Ballay, M., & Brunton, N. (2012). The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chemistry, 133(4), 1123–1130.

    Article  CAS  Google Scholar 

  • Wu, T., Yan, J., Liu, R., Marcone, M. F., Aisa, H. A., & Tsao, R. (2012). Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chemistry, 133(4), 1292–1298.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pataro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frontuto, D., Carullo, D., Harrison, S.M. et al. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioprocess Technol 12, 1708–1720 (2019). https://doi.org/10.1007/s11947-019-02320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02320-z

Keywords

Navigation