Food and Bioprocess Technology

, Volume 12, Issue 7, pp 1157–1173 | Cite as

Nanoencapsulation of Hydrophobic Food Flavor Ingredients and Their Cyclodextrin Inclusion Complexes

  • Shima SaffarionpourEmail author
Original Paper


Preservation of hydrophobic, volatile, food flavor ingredients during processing is a foremost concern for food manufacturers. Nanoencapsulation is a method, which enables achieving enhanced thermal stability, solubility, and antioxidant activity of flavors. Among the available techniques for nanoencapsulation, electrohydrodynamic technique and encapsulation of flavors in nanofibers give the opportunity to achieve enhanced efficiency and higher surface-to-volume ratio, with a more compact size equipment and a cost-effective process. Cyclodextrins have the potential to be used as nanocarriers with the capability to form complexes with various non-polar flavor molecules. The formed cyclodextrin inclusion complexes (ICs) can be included into biopolymers or can be electrospun to form a polymer-free nanofiber. Natural and modified types of cyclodextrins can be applied for encapsulation and development of inclusion complexes with flavor molecules. Higher thermal stability was achievable with γ-CD-ICs in most of the studied cases, due to larger size of the cavity, and higher strength of the formed complex. From the modified types of cyclodextrins, formed ICs of Mβ-CD showed higher stability, due to rigid structure of the molecule and HPβ-CD enabled achieving higher antioxidant properties, due to less strength of the formed complex and possibility for hydrogen donation. In comparison with polymeric nanofibers, polymer-free systems enabled higher loading of flavors. Concluding from the reported studies, electrospun nanofibers prepared from flavors and their CD-ICs can give the possibility to achieve higher thermal stability, enhanced solubility, antioxidant, and antibacterial properties together with prolonged shelf life of foods and can be applied in food processing and packaging.


Hydrophobic flavors Nanoencapsulation Electrohydrodynamic technique Cyclodextrins Inclusion complex Nanofibers 


Compliance with Ethical Standards

Conflict of Interest

The author declares that there is no conflict of interest.


  1. Acton, Q. A. (2011). Banaras Hindu University: Preparation and characterization of hydroxypropyl-b-cyclodextrin inclusion complex of eugenol: differential pulse voltammetry and (1)H-NMR. In Issues in chemistry and general chemical research (Scholarly ed.). Atlanta.Google Scholar
  2. Ahmed, J., Tiwari, B. K., Imam, S. H., & Rao, M. A. (2012). Starch-based polymeric materials and nanocomposites, Chemistry, Processing, and Applications. Boca Raton: Taylor and Francis Group, LLC.CrossRefGoogle Scholar
  3. Alehosseini, A., Ghorani, B., Sarabi-Jamab, M., & Tucker, N. (2017). Principles of electrospraying: a new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr, 1–18.Google Scholar
  4. Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocoll, 81, 48–59.CrossRefGoogle Scholar
  5. Alvarez-Henano, M. V., Saavedra, N., Medina, S., Cartagena, C. J., Alzate, L. M., & Londono-Londono, J. (2018). Microencapsulation of lutein by spray-drying: characterization and stability analyses to promote its use as a functional ingredient. Food Chem, 256, 181–187.CrossRefGoogle Scholar
  6. Ambruster, F.C., Kooi, E.R., 1969 Production of cyclodextrin (US3425910A) Unilever Bestfoods North America, USA. Retrieved from:
  7. Aytac, Z., & Uyar, T. (2017). Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin. Int J Pharm, 518, 177–184.CrossRefGoogle Scholar
  8. Aytac, Z., Yildiz, Z. I., Kayaci-Senirmak, F., San Keskin, N. O., Tekinay, T., & Uyar, T. (2016). Electrospinning of polymer-free cyclodextrin/geraniol–inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 6, 46089–46099.Google Scholar
  9. Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017a). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem, 233, 117–124.CrossRefGoogle Scholar
  10. Aytac, Z., Yildiz, Z. I., Kayaci-Senirmak, F., Tekinay, T., & Uyar, T. (2017b). Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem, 231, 192–201.CrossRefGoogle Scholar
  11. Barnekow, R., Muche, S., Ley, J., & Sabater, C. (2007). Creation and production of liquid and dry flavours. In R. G. Berger (Ed.), Flavours and fragrances, chemistry, bioprocessing and sustainability. Berlin Heidelberg: Springer-Verlag.Google Scholar
  12. Begum, H. A., & Rahman Khan, M. K. (2017). Study on the various types of needle based and needleless electrospinning system for nanofiber production. Int J Tex Sci, 6, 110–117.Google Scholar
  13. BeMiller, J., & Whistler, R. (2009). Starch chemistry and technology (Third ed.). USA: Elsevier Inc..Google Scholar
  14. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 28, 325–347.CrossRefGoogle Scholar
  15. Bhushani, J. A., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol, 38, 21–33.CrossRefGoogle Scholar
  16. Blanco-Padilla, A., López-Rubio, A., Loarca-Piña, G., Gómez-Mascaraque, L. G., & Mendoza, S. (2015). Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT - Food Sci Technol, 63, 1137–1144.CrossRefGoogle Scholar
  17. Bleiel, S. B., Kent, R. M., & Brodkorb, A. (2017). Encapsulation efficiency and capacity of bioactive delivery systems. In Y. H. Roos & Y. D. Livney (Eds.), Engineering foods for bioactives stability and delivery. New York: Springer.Google Scholar
  18. Branta Lopes, D., Speranza, P., & Alves Macedo, G. (2016). A new approach for flavor and aroma encapsulation. In A. M. Grumezescu (Ed.), Novel approaches of nanotechnology in food, Nanotechnology in the Agri-Food industry (pp. 623–661). UK: Elsevier Inc..CrossRefGoogle Scholar
  19. Casper, C. I., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. (2004). Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules, 37, 573–578.Google Scholar
  20. Celebioglu, A., & Uyar, T. (2012). Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale, 4, 621–631.CrossRefGoogle Scholar
  21. Celebioglu, A., & Uyar, T. (2018). Cyclodextrin short-nanofibers using sacrificial electrospun polymeric matrix for VOC removal. J Inclu Phenom Mol Recog Chem, 90, 135–141.CrossRefGoogle Scholar
  22. Celebioglu, A., Kayaci-Senirmak, F., Ipek, S., Durgun, E., & Uyar, T. (2016). Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct, 7, 3141–3153.CrossRefGoogle Scholar
  23. Celebioglu, A., Yildiz, Z. I., & Uyar, T. (2018a). Fabrication of electrospun eugenol/cyclodextrin inclusion complex nanofibrous webs for enhanced antioxidant property, water solubility, and high temperature stability. J Agricult Food Chem, 66, 457–466.CrossRefGoogle Scholar
  24. Celebioglu, A., Yildiz, Z. I., & Uyar, T. (2018b). Thymol/cyclodextrin inclusion complex nanofibrous webs: enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int, 106, 280–290.CrossRefGoogle Scholar
  25. Charumanee, S., Titwan, A., Sirithunyalug, J., Weiss-Greiler, P., Wolschann, P., Viernstein, H., Okonogi, S., 2006. Thermodynamics of the encapsulation by cyclodextrins. J Chem Tech Biotechnol 81, 523-529.Google Scholar
  26. Chawda, P. J., Shi, J., Xue, S., & Quek, S. Y. (2017). Co-encapsulation of bioactives for food applications. Food Qual Safe, 1, 302–309.CrossRefGoogle Scholar
  27. ChemAxon, 2019., Accessed 11 February, 2019
  28. Chranioti, C., & Tzia, C. (2015). Encapsulation of food ingredients. In T. Varzakas & C. Tzia (Eds.), Food engineering handbook, Food process engineering. Boca Roaton: CRC Press, Taylor & Francis group.Google Scholar
  29. Code of Federal Regulations, F.a.D.A.F., 2018a. Chapter E Animal drugs and related products, Part 582. Substances generally recognized as safe. Food and drug administration, Department of Health and Human Services.Google Scholar
  30. Code of Federal Regulations, F.a.D.A.F., 2018b. Sec. 501.22 Animal Foods, labeling of spices, flavorings, colorings, and chemical preservatives. Food and Drug Administration, Department of Health and Human Services.Google Scholar
  31. Code of Federal Regulations, F.a.D.A.F., 2018c. Subchapter E, Part 582.60 Synthetic flavoring substances and adjuvants. Food and Drug Administration, Department of Health and Human Services.Google Scholar
  32. Crini, G. (2014). Review: a history of cyclodextrins. Chem Rev, 114, 10940–10975.CrossRefGoogle Scholar
  33. Crini, G., Fourmentin, S., Fenyvesi, E., Torri, G., Fourmentin, M., & Morin-Crini, N. (2018). Fundamentals and applications of cyclodextrins. In S. Fourmentin, C. G., & E. Lichtfouse (Eds.), Cyclodextrin fundamentals, reactivity and analysis. Springer.Google Scholar
  34. de Souza Simoes, L., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, O. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances Colloid Interface Sci, 243, 23–45.CrossRefGoogle Scholar
  35. Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochem, 39, 1033–1046.CrossRefGoogle Scholar
  36. Dodzuik, H. (2006). Cyclodextrins and their complexes, Chemistry, Analytical Methods, Applications. Weinheim: Wiley-VCH Verlag GmbH & Co.CrossRefGoogle Scholar
  37. Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2016). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: a comparative assessment of food-related applications. Dry Technol, 35, 139–162.CrossRefGoogle Scholar
  38. Estevinho, B. N., & Rocha, F. (2017). A key for the future of the flavors in food industry. In A. Elena Oprea & A. M. Grumezescu (Eds.), Nanotechnology applications in food (pp. 1–19). Elsevier Inc.Google Scholar
  39. Faridi Esfanjani, A., Jafari, S. M., Assadpoor, E., & Mohammadi, A. (2015). Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J Food Eng, 165, 149–155.CrossRefGoogle Scholar
  40. Faridi Esfanjani, A., Jafari, S. M., & Assadpoor, E. (2017). Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem, 221, 1962–1969.CrossRefGoogle Scholar
  41. Fenyvesi, E., & Szente, L. (2016). Cyclodextrins in Food technology and human nutrition: benefits and limitations in 2012. Crit Rev Food Sci Nutr, 56, 1981–2004.CrossRefGoogle Scholar
  42. French, D. (1957). The Schardinger dextrins. Adv Carbohydr Chem, 12, 189–260.Google Scholar
  43. Freudenberg, K., & Cramer, F. (1948). Die Konstitution der Schardinger-Dextrine α, β und γ. Zeitschrift für Naturforschung B, 3, 464.CrossRefGoogle Scholar
  44. Fuenmayor, C. A., Mascheroni, E., Cosio, M. S., Piergiovanni, L., Benedetti, S., Ortenzi, M., Schiraldi, A., & Mannino, S. (2013). Encapsulation of R-(+)-limonene in edible electrospun nanofibers. Chem Eng Trans, 32, 1771–1776.Google Scholar
  45. Garcia-Saldana, J. S., Campas-Baypoli, O. N., Lopez-Cervantes, J., sanchez-Machado, D. I., cantu-Soto, E. U., & Rodriguez-Ramirez, R. (2016). Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes. Food Chemi, 201, 94–100.CrossRefGoogle Scholar
  46. Ghaeb, M., Tavanai, H., & Kadivar, M. (2015). Electrosprayed maize starch and its constituents (amylose and amylopectin) nanoparticles. Polym Adv Technol, 26, 917–923.CrossRefGoogle Scholar
  47. Grumezescu, A.M., 2016. Encapsulations. Elsevier Inc., UK.Google Scholar
  48. Grumezescu, A. M., & Holban, A. M. (2018). Role of materials science in food bioengineering. UK: Elsevier Inc..Google Scholar
  49. Hauser, P. J. (2011). Textile Dyeing. Croatia: InTech.CrossRefGoogle Scholar
  50. Havkin-Frenkel, D., & Belanger, F. C. (2008). Biotechnology in flavor production. Singapore: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  51. Hostettmann, K. (2014). Handbook of chemical and biological plant analytical methods. UK: John Wiley and Sons Ltd.Google Scholar
  52. Huang, J.-R., Zhuang, H.-N., & Jin, Z.-Y. (2013). Introduction. In Z.-Y. Jin (Ed.), Cyclodextrin chemistry, preparation and application. Singapore: World Scientific Publishing Co. Pte. Ltd.Google Scholar
  53. Jafari, S. M. (2017a). Nanoencapsulation of food bioactive ingredients, principles and applications. UK: Elsevier Inc..Google Scholar
  54. Jafari, S. M. (2017b). An overview of nanoencapsulation techniques and their classification. In S. M. Jafari (Ed.), Nanoencapsulation technologies for the food and nutraceutical industries (pp. 1–34). London: Academic Press, Elsevier Inc..Google Scholar
  55. Jiang, S., Chen, Y., Duan, G., Mei, C., Greiner, A., & Agarwal, S. (2018). Electrospun nanofiber reinforced composites: a review. Polym Chem, 9, 2658–2720.Google Scholar
  56. Kayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem, 133, 641–649.CrossRefGoogle Scholar
  57. Kayaci, F., Ertas, Y., & Uyar, T. (2013). Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agricult Food Chem, 61, 8156–8165.CrossRefGoogle Scholar
  58. Kayaci, F., Sen, H. S., Durgun, E., & Uyar, T. (2014). Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int, 62, 424–431.CrossRefGoogle Scholar
  59. Kfoury, M., Landy, D., Ruellan, S., Auezova, L., Greige-Gerges, H., & Fourmentin, S. (2016). Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol. Beilstein J Org Chem, 12, 29–42.CrossRefGoogle Scholar
  60. Khan, M. K. I., Nazir, A., & Maan, A. A. (2016). Electrospraying: a novel technique for efficient coating of foods. Food Eng Rev, 9, 112–119.CrossRefGoogle Scholar
  61. Kumar, D. H. L., & Sarkar, P. (2017). Nanoemulsions for nutrient delivery in food. In S. Ranjan, N. Dasgupta, & E. Lichtfouse (Eds.), Nanoscience in food and agriculture 5 (Fourth ed.). Switzerland: Springer.Google Scholar
  62. Kumar, D. H. L., & Sarkar, P. (2018). Encapsulation of bioactive compounds using nanoemulsions. Environ Chem Lett, 16, 59–70.CrossRefGoogle Scholar
  63. Kurkov, S. V., & Loftsson, T. (2013). Cyclodextrins. Int J Pharm, 453, 167–180.CrossRefGoogle Scholar
  64. Kwan, A., & Davidov-Padro, G. (2018). Controlled release of flavor oil nanoemulsions encapsulated in filled soluble hydrogels. Food Chem, 250, 46–53.CrossRefGoogle Scholar
  65. Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release- a review. Int J Food Sci Technol, 41, 1–21.CrossRefGoogle Scholar
  66. MarketsandMarkets, 2018. Food flavors market by type (chocolate & browns, vanilla, fruits & nuts, dairy, spices), application (beverages, dairy, confectionery, bakery, meat, savory & snacks), origin (natural and artificial), form, and region - global forecast to 2023. Markets and Markets., Accessed 11 February, 2019
  67. Marketsandmarkets, 2018a. Flavors & fragrances market by ingredients (natural, synthetic), end use (beverage, savory & snacks, bakery, dairy products, confectionery, consumer products, fine fragrances), and region (Asia Pacific, North America, Europe) - global forecast to 2022. MarketsandMarkets. html, Accessed 11 February, 2019
  68. Marketsandmarkets, 2018b. Food flavors market by type (chocolate, vanilla, fruits & nuts, others), origin (natural, synthetic), application (beverages, savory & snacks, bakery & confectionery, dairy & frozen products, others), & by region - global forecast to 2020. MarketsandMarkets., Accessed 11 February, 2019
  69. Mc Clements, D. J. (2012). Requirements for food ingredient and nutraceutical delivery systems. In N. Garti & D. J. Mc Clements (Eds.), Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Cambridge: Woodhead Publishing.Google Scholar
  70. McBarron, J. (2011). Curcumin: the 21st century cure. Book Baby.Google Scholar
  71. Mitt-uppatham, C., Nithanakul, M., & Supaphol, P. (2004). Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys, 205, 2327–2338.CrossRefGoogle Scholar
  72. Mungure, T. E., Roohinejad, S., Bekhit, A. E. D., Greiner, R., & Mallikarjunan, K. (2018). Potential application of pectin for the stabilization of nanoemulsions. Curr Opin Food Sci, 19, 72–76.CrossRefGoogle Scholar
  73. Nguyen, T. T. H., Si, J., Kang, C., Chung, B., Chung, D., & KIm, D. (2017). Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food Chem, 214, 366–373.CrossRefGoogle Scholar
  74. Price, S., & Price, L. (2011). Aromatherapy for health professionals E-book, Forth. Elsevier Health Sciences.Google Scholar
  75. Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19.Google Scholar
  76. PubChem, 2019., Accessed 11 February, 2019
  77. Qiu, N., Li, X., & Liu, J. (2017). Application of cyclodextrins in cancer treatment. J Incl Phenom Macrocycl Chem, 89, 229–246.CrossRefGoogle Scholar
  78. Ray, S., Raychaudhuri, U., & Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci, 13, 76–83.CrossRefGoogle Scholar
  79. Reineccius, G. (2017). Part B Food and Flavours. In A. Buethner (Ed.), Springer Handbook of odor. Leipzig: Springer International Publishing AG, Publishing services GmbH.Google Scholar
  80. Rekharshy, M., & Inoue, Y. (2004). Solvation effects in guest binding. In J. L. Atwood & J. W. Steed (Eds.), Encyclopedia of supramolecular chemistry (second ed., p. 1322). USA: Marcel Dekker Inc.CrossRefGoogle Scholar
  81. Rezaei, A., Nasirpour, A., & Fathi, M. (2015). Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Compr Rev Food Sci Food Saf, 14, 269–284.CrossRefGoogle Scholar
  82. Saenger, W. (1980). Cyclodextrin inclusion compounds in research and industry. Angew Chemie Int Ed Engl, 19.Google Scholar
  83. Saffarionpour, S., & Ottens, M. (2018). Recent advances in techniques for flavor recovery in liquid food processing. Food Eng Rev, 10, 81–94.CrossRefGoogle Scholar
  84. Santos, M.G., Carpinteiro, D.A., Thomazini, M., Rocha-Selmi, G.A., da CRuz, A.G., Rodrigues, C.E.C., Favaro-Trindade, C.S., 2014. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res Int 66, 454-462.Google Scholar
  85. Shachman, M. (2004). The soft drinks companion: a technical handbook for the beverage industry. Boca Raton: CRC Press, Taylor & Francis Group L.L.C.CrossRefGoogle Scholar
  86. Shao, Y., Wu, C., Wu, T., Chen, S., Yuan, C., & Hu, Y. (2018). Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: formulation, characterization and antimicrobial activity. Carbohydr Polym, 193, 144–152.CrossRefGoogle Scholar
  87. Smolinske, S. C. (1992). Handbook of food, drug, and cosmetic excipients. USA: CRC Press.Google Scholar
  88. Sung, B., Prasad, S., Gupta, S. C., Patchva, S., & Aggrawal, B. B. (2012). Regulation of inflammation-mediated chronic diseases by botanicals. In L.-F. Shyur & A. S. Y. Lau (Eds.), Advances in botanical research (pp. 57–132). Elsevier Inc.Google Scholar
  89. Szejtli, J. (1984). In J. L. Atwood, J. E. D. Davies, & D. D. MacNicol (Eds.), Industrial applications of cyclodextrins, Inclusion compounds. Academic Press.Google Scholar
  90. Szejtli, J. (1988). Cyclodextrin technology. Dordrecht: Springer Science+Business Media, B.V.CrossRefGoogle Scholar
  91. Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chem Rev, 98, 1743–1754.Google Scholar
  92. Szejtli, J. (2004). Past, present, and future of cyclodextrin research. Pure Appl Chem, 76, 1825–1845.Google Scholar
  93. Szejtli, J., & Huber, O. (1988). Advances in inclusion science. In Proceedings of the Fourth International Symposium on CYCLODEXTRINS. Dordrecht: Kluwer Academic Publishers.Google Scholar
  94. Talegaonkar, S., Pandey, S., Rai, N., Rawat, P., Sharma, H., & Kumari, N. (2016). Exploring nanoencapsulation of aroma and flavors as new frontier in food technology. In A. M. Grumezescu (Ed.), Encapsulation, Nanotechnology in the agri-food industry (pp. 47–88). London: Elsevier Inc..Google Scholar
  95. Tampau, A., González-Martinez, C., & Chiralt, A. (2017). Carvacrol encapsulation in starch or PCL based matrices by electrospinning. J Food Eng, 214, 245–256.CrossRefGoogle Scholar
  96. Villiers, A. (1891). Sur la fermentation de la fécule par l’action du ferment butyrique. Comptes rendusde l’Academie des sciences, CXII, 435.Google Scholar
  97. Wen, P., Zhu, D.-H., Wu, H., Zong, M.-H., Jing, Y.-R., & Han, S.-Y. (2016a). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Contr, 59, 366–376.CrossRefGoogle Scholar
  98. Wen, P., Zhu, D. H., Feng, K., Liu, F. J., Lou, W. Y., Li, N., Zong, M. H., & Wu, H. (2016b). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/beta-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem, 196, 996–1004.CrossRefGoogle Scholar
  99. Wen, P., Zong, M.-H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: a novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol, 70, 56–68.CrossRefGoogle Scholar
  100. Willock, D. (2009). Molecular symmetry. UK: John Wiley & Sons Ltd.CrossRefGoogle Scholar
  101. Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018a). Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J Mater Sci, 53, 15837–15849.CrossRefGoogle Scholar
  102. Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018b). Menthol/cyclodextrin inclusion complex nanofibers: enhanced water-solubility and high-temperature stability of menthol. J Food Eng, 224, 27–36.CrossRefGoogle Scholar
  103. Yördem, O. S., Papila, M., & Menceloğlu, Y. Z. (2008). Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des, 29, 34–44.CrossRefGoogle Scholar
  104. Zeng, Z., Fang, Y., & Ji, H. (2012). Side chain influencing the interaction between β-cyclodextrin and vanillin. Flavour and Fragrance J, 27, 378–385.CrossRefGoogle Scholar
  105. Zhengyu, J. (2018). Cyclodextrins, preparation and applications in industry. Singapore: World Scientific Publishing Co. Pte Ltd.Google Scholar
  106. Zuidam, N. J., & Nedovic, V. A. (2010). Encapsulation technologies for active food ingredients and food processing. New York: Springer Science+Business Media, LLC.CrossRefGoogle Scholar
  107. Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulation for use in food products or processes and methods to make them. In N. J. Zuidam & V. Nedovic (Eds.), Encapsulation technologies for active food ingredients and food processing. New York: Springer-Verlag.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.DelftNetherlands

Personalised recommendations