Skip to main content
Log in

Effects of phosphorylation on the chemical composition, molecular structure, and paste properties of Hedychium coronarium starch

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work describes the chemical modification of a non-conventional starch by means of phosphorylation, improving its characteristics in order to meet the demands of the consumer market. The evaluation was made of the effect of phosphorylation on the chemical composition, molecular structure, and paste properties of starch extracted from rhizomes of Hedychium coronarium. Phosphorylation was performed using sodium tripolyphosphate (3–7%), with reaction times of 20, 30, and 40 min. Molecular structure, morphology, chemical composition, and physical properties of the modified starches were analyzed. Phosphorus was not detected in the native sample; however, phosphorylation generated distarch phosphates containing 0.013, 0.233, and 0.477% of phosphorus, with B-type crystallinity patterns, which were more stable than the native starch. The paste properties showed that phosphorylation had a strong influence on the viscosity of the starch reducing the tendency for retrogradation and increasing peak viscosity which was higher than that of native starch. The characteristics of modified H. coronarium starch by phosphorylation produced suitable starches for applications requiring stronger paste consistency and low retrogradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcázar-Alay, C. A., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35(2), 215–236.

    Article  Google Scholar 

  • AOAC. (2005). Official methods of analysis of association of official analytical chemists (18th ed.). Gaithersburg: AOAC International.

    Google Scholar 

  • Ascheri, D. P. R., Moura, W. S., Ascheri, J. L. R., & Carvalho, C. W. P. (2010). Caracterização física e físico-química de rizomas e amido do lírio-do-brejo (Hedychium coronarium). Pesquisa Agropecuária Tropical, 40(2), 159–166.

    Google Scholar 

  • Ascheri, D. P. R., Pereira, L. D., & Bastos, S. M. C. (2014). Chemical, morphological, rheological and thermal properties of Solanum lycocarpum phosphorylated starches. Revista Ceres, 61(4), 458–466.

    Article  Google Scholar 

  • Batista, W. P., Silva, C. E. M., & Liberato, M. C. (2010). Propriedades químicas e de pasta dos amidos de trigo e milho fosforilados. Ciência Tecnologia de Alimentos, 30(1), 88–93.

    Article  Google Scholar 

  • Blennow, A. (2015). Phosphorylation of the starch granule. In Y. Nakamura (Ed.), Starch (pp. 399–424). Tokyo: Springer.

    Chapter  Google Scholar 

  • Blennow, A., Nielsen, T. H., Baunsgaard, L., Mikkelsen, R., & Engelsen, S. B. (2002). Starch phosphorylation: a new front line in starch research. Trends in Plant Science, 7(10), 445–450.

    Article  CAS  PubMed  Google Scholar 

  • Bruni, G. P., Oliveira, J. P., El Halal, S. L. M., Gundel, A., Miranda, M. Z., Dias, A. R. G., & Zavareze, E. R. (2018). Phosphorylated and cross-linked wheat starches in the presence of polyethylene oxide and their application in biocomposite films. Starch/Stärke, 70(7–8), 1–9.

    Google Scholar 

  • Carmona-Garcia, R., Sanchez-Rivera, M. M., Mendez-Montealvo, G., Garzamontoya, B., & Bello-Perez, L. A. (2009). Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydrate Polymers, 76(1), 117–122.

    Article  CAS  Google Scholar 

  • CFR (Code of Federal Regulations). (2013). Food starch-modified. Title 21, Chapter1, Part 172, Sec. 172.892. In Food additives permitted for direct addition to food for human consumption. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Chaithra, B., Satish, S., Karunakar, H., & Shabaraya, A. R. (2017). Pharmacological review on Hedychium coronarium Koen: the white ginger lily. International Journal of Pharma and Chemical Research, 3(4), 831–836.

    Google Scholar 

  • Chen, Y., Sun, X., Zhou, X., Hebelstrup, K. H., Blennow, A., & Bao, J. (2017). Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GWD1 gene. Scientific Reports, 7(1), 3339. https://doi.org/10.1038/s41598-017-03637-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, H. J., Liu, Q., Donner, E., Hoover, R., Warkentin, T. D., & Vandenberg, B. (2008). Composition, molecular structure, properties, and in vitro digestibility of starches from newly released Canadian pulse cultivars. Cereal Chemistry, 85(4), 471–479.

    Article  CAS  Google Scholar 

  • Claver, I. P., Zhang, H., Li., Q, Kexue, Z., & Zhou, H. (2010). Optimization of ultrasonic extraction of polysaccharides from Chinese malted sorghum using a response surface methodology. Pakistan Journal of Nutrition, 9(4), 336–342.

  • Gomes, M. A., Ascheri, D. P. R., & Campos, A. J. (2016). Characterization of edible films of Swartzia burchelli phosphate starches and development of coatings for post-harvest application to cherry tomatoes. Semina: Ciências Agrárias, 37(4), 1897. https://doi.org/10.5433/1679-0359.2016v37n4p1897.

    Article  Google Scholar 

  • Heo, H., Lee, Y.-K., & Chang, Y. H. (2017). Rheological, pasting, and structural properties of potato starch by cross-linking. International Journal of Food Properties, 20(S2), 138–150.

    Google Scholar 

  • Instituto Adolfo Lutz. (2008). Métodos físico-químicos para análise de alimentos. São Paulo: Instituto Adolfo Lutz.

    Google Scholar 

  • Kapelko, M., Zięba, T., Michalski, A., & Gryszkin, A. (2015). Effect of cross-linking degree on selected properties of retrograded starch adipate. Food Chemistry, 167, 124–130.

    Article  CAS  PubMed  Google Scholar 

  • Karim, A. A., Toon, L. C., Lee, V. P., Ong, W. Y., Fazilah, A., & Noda, T. (2007). Effects of phosphorus contents on the gelatinization and retrogradation of potato starch. Journal of Food Science, 72(2), 132–138.

    Article  CAS  Google Scholar 

  • Kramer, M. E. (2009). Structure and function of starch-based edible films and coatings. In K. C. Huber & M. E. Embuscado (Eds.), Edible films and coatings for food applications (pp. 113–134). New York: Springer.

    Chapter  Google Scholar 

  • Leach, H. W., McCowen, L. D., & Schoch, T. J. (1959). Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chemistry, 36, 534–544.

    CAS  Google Scholar 

  • Leon, E., Piston, F., Aouni, R., Shewry, P. R., Roseli, C. M., Martin, A., & Barro, F. (2010). Pasting properties of transgenic lines of a commercial bread wheat expressing combinations of HMW glutenin subunit genes. Journal of Cereal Science, 51(3), 344–349.

    Article  CAS  Google Scholar 

  • Lim, S., & Seib, P. A. (1993). Preparation and pasting properties of wheat and corn starch phosphates. Cereal Chemistry, 70(2), 137–144.

    CAS  Google Scholar 

  • Limberger, V. M., Silva, L. P., Emanuelli, T., Comarela, C. G., & Patias, L. D. (2008). Modificação química e física do amido de quirera de arroz para aproveitamento na indústria de alimentos. Química Nova, 31(1), 84–88.

    Article  CAS  Google Scholar 

  • Lu, Y., Zhong, C. X., Wang, L., Lu, C., Li, X. L., & Wang, P. J. (2009). Anti-inflammation activity and chemical composition of flower essential oil from Hedychium coronarium. African Journal of Biotechnology, 8(20), 5373–5377.

    CAS  Google Scholar 

  • Mahlow, S., Orzechowski, O., & Fettke, J. (2016). Starch phosphorylation: insights and perspectives. Cellular and Molecular Life Sciences, 73(14), 2753–2764.

    Article  CAS  PubMed  Google Scholar 

  • Maningat, C. C., Seib, P. A., Bassi, S. D., & Woo, K. S. (2009). Wheat starch: production, properties, modifications and uses. In J. N. Bemiller & R. L. Whistler (Eds.), Starch: chemistry and technology. Elsevier: Academic Press.

    Google Scholar 

  • Manoi, K., & Rizvi, S. S. H. (2010). Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydrate Polymers, 81(3), 687–694.

    Article  CAS  Google Scholar 

  • McCready, R. M., & Hassid, W. Z. (1943). The separation and quantitative estimation of amylose and amylopectin in potato starch. Journal of the American Chemical Society, 65(6), 1154–1157.

    Article  CAS  Google Scholar 

  • Nara, S., & Komiya, T. (1983). Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch/Stärke, 35(12), 407–410.

    Article  CAS  Google Scholar 

  • Neelan, K., Vijay, S., & Lalit, S. (2012). Various techniques for the modification of starch and the applications of its derivatives. International Research Journal of Pharmacy, 3(5), 25–31.

    Google Scholar 

  • Neto, R. B. (2004). Raio-X. In S. V. Canevarolo Jr. (Ed.), Técnicas de caracterização de polímeros. São Paulo: Artliber.

    Google Scholar 

  • Noda, T., Kottearachchi, N. S., Tsuda, S., Mori, M., Takigawa, S., Matsuura-Endo, C., Kin, S. J., Hashimoto, N., & Yamauchi, H. (2007). Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties. Carbohydrate Polymers, 68(4), 793–796.

    Article  CAS  Google Scholar 

  • Pirt, S. J., & Whelan, W. J. (1951). The determination of starch by acid hydrolysis. Journal of the Science of Food and Agriculture, 2(5), 224–228. https://doi.org/10.1002/jsfa.2740020507.

    Article  CAS  Google Scholar 

  • Polnaya, F. J., Haryadi, Marseno, D. W., & Cahyanto, M. N. (2013). Effects of phosphorylation and cross-linking on the pasting properties and molecular structure of sago starch. International Food Research Journal, 20(4), 1609–1615.

    Google Scholar 

  • Ribeiro, A. E. C., Ascheri, D. P. R., & Ascheri, J. L. R. (2017). Amidos fosfatados da Swartzia burchelli: propriedades físicas e físico-químicas. B. CEPPA, 35(1), 1–17.

    Google Scholar 

  • Rożnowski, J., Przetaczek-Rożnowska, I., & Boba, D. (2017). Physicochemical properties of native and phosphorylated pumpkin starch. Starch, 69(1-2). https://doi.org/10.1002/star.201500358.

  • Sandhu, K. S., & Singh, N. (2007). Some properties of corn starch II: physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507. https://doi.org/10.1016/j.foodchem.2006.01.060.

    Article  CAS  Google Scholar 

  • Sang, Y., Seib, P. A., Herrera, A. I., Prakash, O., & Shi, Y. C. (2010). Effects of alkaline treatment on the structure of phosphorylated wheat starch and its digestibility. Food Chemistry, 118(2), 323–327.

    Article  CAS  Google Scholar 

  • Sechi, N. S. M., & Marques, P. T. (2017). Preparation and physicochemical, structural and morphological characterization of phosphorylated starch. Materials Research, 20(suppl 2), 174–180. https://doi.org/10.1590/1980-5373-mr-2016-1008.

    Article  Google Scholar 

  • Singh, A. V., & Nath, L. K. (2011). Synthesis and evaluation of physicochemical properties of cross-linked Phaseolus aconitifolius starch. Starch/Stäke, 63(10), 655–660.

    Article  CAS  Google Scholar 

  • Singh, N., Kaur, L., & Ezekiel, R. (2005). Microstructural, cooking and textural characteristics of potato (Solanum tuberosum L.) tubers in relation to physicochemical and functional properties of their flours. Journal of the Science of Food and Agriculture, 85(8), 1275–1284.

    Article  CAS  Google Scholar 

  • Singh, S., Singh, N., & Macritchie, F. (2011). Relationship of polymeric proteins with pasting, gel dynamic- and dough empirical-rheology in different Indian wheat varieties. Food Hydrocolloids, 25(1), 19–24.

    Article  CAS  Google Scholar 

  • Sitohy, M. Z., El-Saadany, S. S., Labib, S. M., & Ramadan, M. F. (2000). Physicochemical properties of different types of starch phosphate monoesters. Starch, 52(4), 101–105.

    Article  CAS  Google Scholar 

  • Tang, H., Mitsunaga, T., & Kawamura, Y. (2004). Relationship between functionality and structure in barley starches. Carbohydrate Polymers, 57(2), 145–152.

    Article  CAS  Google Scholar 

  • Udachan, I. S., Sahoo, A. K., & Hend, G. M. (2012). Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. International Food Research Journal, 19(1), 315–319.

    CAS  Google Scholar 

  • Yuan, Y., Zhang, L., Dai, Y., & Yu, J. (2007). Physicochemical properties of starch obtained from Dioscorea nipponica Makino comparison with other tuber starches. Journal of Food Engineering, 82(4), 436–442.

    Article  Google Scholar 

  • Zhang, J., & Wang, Z. W. (2009). Optimization of reaction conditions for resistant Canna edulis Ker. Starch phosphorylation and its structural characterization. Industrial Crops and Products, 30(1), 105–113.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the State University of Goiás, Embrapa Food Technology, and the UFSCar for their support with the analyses.

Funding

This work was financially supported by the Coordination for the Improvement of Higher Education Personnel (Capes), the Foundation for Research Support of Goiás State (Fapeg), and the research stimulation grant of the UEG (BIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Palmiro Ramirez Ascheri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Xavier, T.P., Ascheri, D.P.R., Bastos, S.M.C. et al. Effects of phosphorylation on the chemical composition, molecular structure, and paste properties of Hedychium coronarium starch. Food Bioprocess Technol 12, 1123–1132 (2019). https://doi.org/10.1007/s11947-019-02261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02261-7

Keywords

Navigation