Skip to main content
Log in

Ultrasound Pretreatment to Enhance Drying Kinetics of Kiwifruit (Actinidia deliciosa) Slices: Pros and Cons

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effects of ultrasound (US) pretreatment on drying kinetics and quality attributes including phenols and ascorbic acid content, color parameters (L*, a*, b*, ∆E, BI, and H°), and rehydration kinetics of kiwifruit slices were investigated. Microstructure observations of raw and US pretreated samples were also performed. Results revealed that US pretreatment reduced drying time of kiwifruit slices by 16.67–25.00% compared with the untreated samples. Weibull distribution model could precisely fit the drying behavior of samples under different treatments (R2 > 0.99). US pretreatment had a positive effect on phenolic compounds preservation but had a negative influence on ascorbic acid and solid retention. The highest loss of ascorbic acid was 40.69% after US pretreatment and 87.71% after drying compared to the content of fresh ones. Color change of kiwifruit slices was mainly caused by drying. Page model adequately predicted the rehydration characteristics of dried samples under all conditions. Microstructure observations explained why US pretreatment increased the moisture diffusion ratio and reduced the rehydration time. The findings in current work indicate that although US pretreatment can enhance drying process, it is not an ideal method for kiwifruit slices due to high loss of water-soluble nutrients.

Effects of ultrasound pretreatment on the drying characteristics, ascorbic acid, phenol compounds and microstructure of kiwifruit slices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aadil, R. M., Zeng, X. A., Han, Z., & Sun, D. W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201–3206.

    Article  CAS  PubMed  Google Scholar 

  • Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., Zhang, X., & Zeng, X. (2013). Effect of ultrasound on different quality parameters of apple juice. Ultrasonics Sonochemistry, 20(5), 1182–1187.

    Article  CAS  PubMed  Google Scholar 

  • Aidani, E., Hadadkhodaparast, M., & Kashaninejad, M. (2017). Experimental and modeling investigation of mass transfer during combined infrared-vacuum drying of Hayward kiwifruits. Food Science & Nutrition, 5(3), 596–601.

    Article  Google Scholar 

  • Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286–300.

    Article  CAS  PubMed  Google Scholar 

  • Aral, S., & Beşe, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry, 210, 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versteeg, C. K. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science & Emerging Technologies, 9(2), 155–160.

    Article  CAS  Google Scholar 

  • Aydar, A. Y. (2018). Physicochemical characteristics of extra virgin olive oils obtained by ultrasound assisted extraction from different olive cultivars. International Journal of Scientific and Technological Research ISSN 2422-8702 (Online).

  • Aydar, A., Bağdatlıoğlu, N., & Köseoğlu, O. (2017). Effect of ultrasound on olive oil extraction and optimization of ultrasound-assisted extraction of extra virgin olive oil by response surface methodology (RSM). Grasas y Aceites, 68(2), 189.

    Article  CAS  Google Scholar 

  • Bai, J. W., Sun, D. W., Xiao, H. W., Mujumdar, A., & Gao, Z. J. (2013a). Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies, 20, 230–237.

    Article  CAS  Google Scholar 

  • Bai, J. W., Gao, Z. J., Xiao, H. W., Wang, X. T., & Zhang, Q. (2013b). Polyphenol oxidase inactivation and vitamin C degradation kinetics of Fuji apple quarters by high humidity air impingement blanching. International Journal of Food Science and Technology, 48(6), 1135–1141.

    Article  CAS  Google Scholar 

  • Bhat, R., Kamaruddin, N. S. B. C., Min-Tze, L., & Karim, A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6), 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  • Bi, X., Hemar, Y., Balaban, M. O., & Liao, X. (2015). The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree. Ultrasonics Sonochemistry, 27, 567–575.

    Article  CAS  PubMed  Google Scholar 

  • Burdon, J., Pidakala, P., Martin, P., & Billing, D. (2017). Softening of ‘Hayward’ kiwifruit on the vine and in storage: the effects of temperature. Scientia Horticulturae, 220, 176–182.

    Article  Google Scholar 

  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157–2184.

    Article  CAS  PubMed  Google Scholar 

  • Cao, X., Zhang, M., Mujumdar, A. S., Zhong, Q., & Wang, Z. (2018). Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying. Ultrasonics Sonochemistry, 40(Pt A), 333–340.

    Article  CAS  PubMed  Google Scholar 

  • Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835.

    Article  CAS  PubMed  Google Scholar 

  • Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560.

    Article  CAS  PubMed  Google Scholar 

  • Corzo, O., Bracho, N., Pereira, A., & Vásquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. LWT- Food Science and Technology, 41(10), 2023–2028.

    Article  CAS  Google Scholar 

  • Costa, M. G. M., Fonteles, T. V., de Jesus, A. L. T., Almeida, F. D. L., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2013). High-intensity ultrasound processing of pineapple juice. Food and Bioprocess Technology, 6(4), 997–1006.

    Article  CAS  Google Scholar 

  • Dai, J. W., Rao, J. Q., Wang, D., Xie, L., Xiao, H. W., Liu, Y. H., & Gao, Z. J. (2015). Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves. Drying Technology, 33(3), 365–376.

    Article  CAS  Google Scholar 

  • Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., Gao, Z. J., & Xiao, H. W. (2017). Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes–a comprehensive review. Critical Reviews in Food Science and Nutrition, 1–25.

  • Fernandes, F. A., Gallão, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT- Food Science and Technology, 41(4), 604–610.

    Article  CAS  Google Scholar 

  • Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., & Witrowa-Rajchert, D. (2016). Ultrasound as a pretreatment method to improve drying kinetics and sensory properties of dried apple. Journal of Food Process Engineering, 39(3), 256–265.

    Article  Google Scholar 

  • Guo, J., Yuan, Y., Dou, P., & Yue, T. (2017). Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins. Food Chemistry, 232, 552–559.

    Article  CAS  PubMed  Google Scholar 

  • Jang, J. H., & Moon, K. D. (2011). Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acid. Food Chemistry, 124(2), 444–449.

    Article  CAS  Google Scholar 

  • Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2015). Effect of ultrasound pre-treatment on the drying kinetics of brown seaweed Ascophyllum nodosum. Ultrasonics Sonochemistry, 23, 302–307.

    Article  CAS  PubMed  Google Scholar 

  • Khadhraoui, B., Turk, M., Fabiano-Tixier, A., Petitcolas, E., Robinet, P., Imbert, R., El Maâtaoui, M., & Chemat, F. (2018). Histo-cytochemistry and scanning electron microscopy for studying spatial and temporal extraction of metabolites induced by ultrasound. Towards chain detexturation mechanism. Ultrasonics Sonochemistry, 42, 482–492.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. I. H., Wellard, R. M., Nagy, S. A., Joardder, M., & Karim, M. (2016). Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innovative Food Science & Emerging Technologies, 38, 252–261.

    Article  CAS  Google Scholar 

  • Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177–182.

    Article  Google Scholar 

  • Nowacka, M., & Wedzik, M. (2016). Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics, 103, 163–171.

    Article  Google Scholar 

  • Nowacka, M., Tylewicz, U., Laghi, L., Dalla Rosa, M., & Witrowa-Rajchert, D. (2014). Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chemistry, 144, 18–25.

    Article  CAS  PubMed  Google Scholar 

  • Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100.

    Article  CAS  PubMed  Google Scholar 

  • Özdemir, M. B., Aktaş, M., Şevik, S., & Khanlari, A. (2017). Modeling of a convective-infrared kiwifruit drying process. International Journal of Hydrogen Energy, 42(28), 18005–18013.

    Article  CAS  Google Scholar 

  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.

    Article  CAS  Google Scholar 

  • Pingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: a review. Food Control, 31(2), 593–606.

    Article  Google Scholar 

  • Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT- Food Science and Technology, 60(2), 773–780.

    Article  CAS  Google Scholar 

  • Ramallo, L., & Mascheroni, R. (2012). Quality evaluation of pineapple fruit during drying process. Food and Bioproducts Processing, 90(2), 275–283.

    Article  CAS  Google Scholar 

  • Raviyan, P., Zhang, Z., & Feng, H. (2005). Ultrasonication for tomato pectinmethylesterase inactivation: effect of cavitation intensity and temperature on inactivation. Journal of Food Engineering, 70(2), 189–196.

    Article  Google Scholar 

  • Rawson, A., Tiwari, B., Tuohy, M., O’Donnell, C., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrasonics Sonochemistry, 18(5), 1172–1179.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21–29.

    Article  CAS  Google Scholar 

  • Santhirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrasonics Sonochemistry, 20(5), 1276–1282.

    Article  CAS  PubMed  Google Scholar 

  • Schössler, K., Jäger, H., & Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innovative Food Science & Emerging Technologies, 16, 113–120.

    Article  Google Scholar 

  • Sulaiman, A., Soo, M. J., Farid, M., & Silva, F. V. (2015). Thermosonication for polyphenoloxidase inactivation in fruits: modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 165, 133–140.

    Article  CAS  Google Scholar 

  • Tao, Y., Wang, P., Wang, Y., Kadam, S. U., Han, Y., Wang, J., & Zhou, J. (2016). Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: impact on drying kinetics and selected quality properties. Ultrasonics Sonochemistry, 31, 310–318.

    Article  CAS  PubMed  Google Scholar 

  • Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107(1), 282–288.

    Article  CAS  Google Scholar 

  • USDA, U., (2018). National nutrient database for standard reference, Legacy Release. Available from https://ndb.nal.usda.gov/ndb.

  • Wang, J., Yang, X. H., Mujumdar, A., Wang, D., Zhao, J. H., Fang, X. M., Zhang, Q., Xie, L., Gao, Z. J., & Xiao, H. W. (2017). Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT- Food Science and Technology, 77, 337–347.

    Article  CAS  Google Scholar 

  • Wang, J., Bai, T. Y., Wang, D., Fang, X. M., Xue, L. Y., Zheng, Z. A., Gao, Z. J., & Xiao, H. W. (2018a). Pulsed vacuum drying of Chinese ginger (Zingiber officinale Roscoe) slices: effects on drying characteristics, rehydration ratio, water holding capacity, and microstructure. Drying Technology, 1–11.

  • Wang, J., Law, C. L., Nema, P. K., Zhao, J. H., Liu, Z. L., Deng, L. Z., Gao, Z. J., & Xiao, H. W. (2018b). Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 224, 129–138.

    Article  CAS  Google Scholar 

  • Wang, J., Mujumdar, A. S., Deng, L. Z., Gao, Z. J., Xiao, H. W., & Raghavan, G. (2018c). High-humidity hot air impingement blanching alters texture, cell-wall polysaccharides, water status and distribution of seedless grape. Carbohydrate Polymers, 194, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Yang, X. H., Mujumdar, A. S., Fang, X. M., Zhang, Q., Zheng, Z. A., Gao, Z. J., & Xiao, H. W. (2018d). Effects of high-humidity hot air impingement blanching (HHAIB) pretreatment on the change of antioxidant capacity, the degradation kinetics of red pigment, ascorbic acid in dehydrated red peppers during storage. Food Chemistry, 259, 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Xu, B., Wei, B., & Zeng, R. (2018e). Low frequency ultrasound pretreatment of carrot slices: effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrasonics Sonochemistry, 40(Pt A), 619–628.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Wang, J., Ye, J., Vanga, S. K., & Raghavan, V. (2019). Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128–136.

    Article  CAS  Google Scholar 

  • Warrington, I., & Weston, G. (1990). Kiwifruit: science and management. Ray Richards & N. Auckland.: Z. Soc. Horticulture Research, 58–70.

  • Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940–949.

    Article  CAS  Google Scholar 

  • Xiao, H. W., GAO, Z. J., Lin, H., & Yang, W. X. (2010). Air impingement drying characteristics and quality of carrot cubes. Journal of Food Process Engineering, 33(5), 899–918.

    Google Scholar 

  • Yu, T. H., Lin, L. Y., & Ho, C. T. (1994). Volatile compounds of blanched, fried blanched, and baked blanched garlic slices. Journal of Agricultural and Food Chemistry, 42(6), 1342–1347.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by China Scholarship Council (CSC) [grant number 201706350195] and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Wei Xiao or Jin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

● US pretreatment reduced drying time of kiwifruit slices by 16.67-25.00%.

● US pretreatment has a negative effect on the ascorbic acid content.

● The Page model describes rehydration kinetics well.

● US pretreatment is not an ideal method for kiwifruit slices drying.

The main corresponding author is Jin Wang, and Hong-Wei Xiao is the co-corresponding author for this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xiao, HW., Ye, JH. et al. Ultrasound Pretreatment to Enhance Drying Kinetics of Kiwifruit (Actinidia deliciosa) Slices: Pros and Cons. Food Bioprocess Technol 12, 865–876 (2019). https://doi.org/10.1007/s11947-019-02256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02256-4

Keywords

Navigation