Skip to main content

Advertisement

Log in

Functional Activity of Oils from Brewer’s Spent Grain Extracted by Supercritical Carbon Dioxide

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work explores the functionality of oils from brewer’s spent grain by supercritical fluid extraction. The process was performed at 20 and 30 MPa, and 40 and 50 °C without and with ethanol as co-solvent in percentages equal to 4 and 8%. Supercritical fluid extraction was compared with Soxhlet using hexane as solvent. The extracts were characterized for their antioxidant capacity by 2,2-diphenyl-1-picryhydrazyl radical (DPPH) assays, total phenolic content by Folin–Ciocalteu assay, fatty acid profile by GC-FID, and oxidative stability by isothermal calorimetry. Moreover, their capacity to retard the oxidation of linseed oil was also studied. Samples from Soxhlet and supercritical carbon dioxide (30 MPa, 50 °C, and 8% of ethanol) showed the highest yields (6.1 ± 0.3% and 6.5 ± 0.1%, w/w), recovery (78.3 ± 2.1% and 81.3 ± 1.8%, w/w), total phenolic contents (28.3 ± 0.5 and 26.2 ± 0.3 mg GAE/g of sample), and antioxidant activity (16.7 ± 0.1 and 14.2 ± 0.1 mg TEA/g of sample). The fatty acid composition of brewer’s spent oil extracted by SFE was similar to that extracted by Soxhlet. The same extracts also reported the highest oxidative stability and ability to slow down linseed oil oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adil, I. H., Cetin, H. I., Yener, M. E., & Bayindirli, A. (2007). Subcritical (carbon dioxide plus ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. Journal of Supercritical Fluids, 43(1), 55–63.

    Article  CAS  Google Scholar 

  • Adil, I. H., Yener, M. E., & Bayindirli, A. (2008). Extraction of total phenolics of sour cherry pomace by high pressure solvent and subcritical fluid and determination of the antioxidant activities of the extracts. Separation Science and Technology, 43(5), 1091–1110.

    Article  CAS  Google Scholar 

  • Aghel, N., Yamini, Y., Hadjiakhoondi, A., & Pourmortazavi, S. M. (2004). Supercritical carbon dioxide extraction of Mentha pulegium L. essential oil. Talanta, 62(2), 407–411.

    Article  CAS  PubMed  Google Scholar 

  • Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., & Weil, J. A. (2004). Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry, 84(4), 551–562.

    Article  CAS  Google Scholar 

  • Angelo, S., Vercellotti, A. J., Jacks, J. T., & Legendre, M. (1996). Lipid oxidation in foods. Critical Reviews in Food Science and Nutrition, 36, 175–224.

    Article  Google Scholar 

  • Benelli, P., Riehl, C. A. S., Smania, A., Smaniac, E. F. A., & Ferreira, S. R. S. (2010). Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SCFE and low pressure techniques: mathematical modeling and extract composition. Journal of Supercritical Fluids, 55(1), 132–141.

    Article  CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30.

    Article  CAS  Google Scholar 

  • Cao, H., Xiao, J. B., & Xu, M. (2007). Comparison of volatile components of Marchantia convoluta obtained by supercritical carbon dioxide extraction and petrol ether extraction. Journal of Food Composition and Analysis, 20(1), 45–51.

    Article  CAS  Google Scholar 

  • Castro-Vargas, H. I., Varela, L. I. R., Ferreira, S. R. S., & Parada, F. (2010). Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. The Journal of Supercritical Fluids, 51(3), 319–324.

    Article  CAS  Google Scholar 

  • Chafer, A., Fornari, T., Berna, A., & Stateva, R. P. (2004). Solubility of quercetin in supercritical CO2 + ethanol as a modifier: measurements and thermodynamic modeling. The Journal of Supercritical Fluids, 32(1-3), 89–96.

    Article  CAS  Google Scholar 

  • Choi, E. S., Noh, M. J., & Yoo, K. P. (1998). Solubilities of o-, m- and p-coumaric acid isomers in carbon dioxide at 308.15-323.15 K and 8.5-25 MPa. Journal of Chemical and Engineering Data, 43(1), 6–8.

    Article  CAS  Google Scholar 

  • Da Porto, C., Decorti, D., & Tubaro, F. (2012). Fatty acids composition and oxidative stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Industrial Crops and Products, 36(1), 401–404.

    Article  CAS  Google Scholar 

  • Fernandes, R. P. P., Trindade, M. A., Tonin, F. G., Pugine, S. M. P., Lima, C. G., Lorenzo, J. M., & de Melo, M. P. (2017). Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chemistry, 233, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, M. P., Rodriguez, J. F., Garcia, M. T., De Lucas, A., & Gracia, I. (2008). Application of supercritical fluid extraction to brewer’s spent grain management. Industrial & Engineering Chemistry Research, 47(5), 1614–1619.

    Article  CAS  Google Scholar 

  • Ferrentino, G., Asaduzzaman, M., & Scampicchio, M. M. (2017). Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Critical Reviews in Food Science and Nutrition, 58, 386–404.

    PubMed  Google Scholar 

  • Ferrentino, G., Morozova, K., Mosibo, O. K., Ramezani, M., & Scampicchio, M. (2018). Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. Journal of Cleaner Production, 186, 253–261.

    Article  CAS  Google Scholar 

  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26(2), 68–87.

    Article  CAS  Google Scholar 

  • Galanakis, C. M. (2013). Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food and Bioproducts Processing, 91(4), 575–579.

    Article  CAS  Google Scholar 

  • Galanakis, C. M., Tsatalasa, P., Charalambous, Z., & Galanakis, I. M. (2018a). Control of microbial growth in bakery products fortified with polyphenols recovered from olive mill wastewater. Environmental Technology & Innovation, 10, 1–15.

    Article  Google Scholar 

  • Galanakis, C. M., Tsatalasa, P., Charalambous, Z., & Galanakis, I. M. (2018b). Polyphenols recovered from olive mill wastewater as natural preservatives in extra virgin olive oils and refined olive kernel oils. Environmental Technology & Innovation, 10, 62–70.

    Article  Google Scholar 

  • Galanakis, C. M., Tsatalasa, P., & Galanakis, I. M. (2018c). Phenols from olive mill wastewater and other natural antioxidants as UV filters in sunscreens. Environmental Technology & Innovation, 9, 160–168.

    Article  Google Scholar 

  • Ghnimi, S., Budilarto, E., & Kamal-Eldin, A. (2017). The new paradigm for lipid oxidation and insights to microencapsulation of omega-3 fatty acids. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1206–1218.

    Article  CAS  Google Scholar 

  • Haman, N., Romano, A., Asaduzzaman, A., Ferrentino, G., Biasioli, F., & Scampicchio, M. (2017). A microcalorimetry study on the oxidation of linoleic acid and the control of rancidity. Talanta, 164, 407–412.

    Article  CAS  PubMed  Google Scholar 

  • Haman, N., Ferrentino, G., Imperiale, S., & Scampicchio, M. (2018). Antioxidant and prooxidant activity of spent coffee extracts by isothermal calorimetry. Journal of Thermal Analysis and Calorimetry, 232, 1065–1075.

    Article  CAS  Google Scholar 

  • Hayes, J. E., Allen, P., Brunton, N., O'grady, M. N., & Kerry, J. P. (2011). Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chemistry, 126(3), 948–955.

    Article  CAS  Google Scholar 

  • Kitryte, V., Saduikis, A., & Venskutonis, P. R. (2015). Assessment of antioxidant capacity of brewer’s spent grain and its supercritical carbon dioxide extract as sources of valuable dietary ingredients. Journal of Food Engineering, 167, 18–24.

    Article  CAS  Google Scholar 

  • Klimek, P., Wimmer, R., Mishra, P. K., & Kudela, J. (2017). Utilizing brewer’s-spent-grain in wood-based particleboard manufacturing. Journal of Cleaner Production, 141, 812–817.

    Article  CAS  Google Scholar 

  • Labuza, T. P., & Dugan, L., Jr. (1971). Kinetics of lipid oxidation in foods. Critical Reviews in Food Science and Nutrition, 2, 355–405.

    Google Scholar 

  • Lee, Y. H., Charles, A. L., Kung, H. F., Ho, C. T., & Huang, T. C. (2010). Extraction of nobiletin and tangeretin from Citrus depressa Hayata by supercritical carbon dioxide with ethanol as modifier. Industrial Crops and Products, 31(1), 59–64.

    Article  CAS  Google Scholar 

  • Lim, G. B., Lee, S. Y., Lee, E. K., Haam, S. J., & Kim, W. S. (2002). Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochemical Engineering Journal, 11(2-3), 181–187.

    Article  CAS  Google Scholar 

  • Lynch, K. M., Steffen, E. J., & Arendt, E. K. (2016). Brewers’ spent grain: a review with an emphasis on food and health. Journal of the Institute of Brewing, 122(4), 553–568.

    Article  CAS  Google Scholar 

  • Mallouchos, A., Lagos, G., & Komaitis, M. (2007). A rapid microwave-assisted derivatization process for the determination of phenolic acids in brewer’s spent grains. Food Chemistry, 102, 606–611.

    Article  CAS  Google Scholar 

  • Materska, M., & Perucka, I. (2005). Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). Journal of Agricultural and Food Chemistry, 53(5), 1750–1756.

    Article  CAS  PubMed  Google Scholar 

  • Mccarthy, A. L., O'callaghan, Y. C., Piggott, C. O., Fitzgerald, R. J., & O'brien, N. M. (2013). Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proceedings of the Nutrition Society, 72(01), 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152–158.

    Article  CAS  Google Scholar 

  • Metcalfe, L. D., Schmitz, A. A., & Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical Chemistry, 38(3), 514–515.

    Article  CAS  Google Scholar 

  • Moreira, M. M., Morais, S., Carvalho, D. O., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2013). Brewer’s spent grain from different types of malt: evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Research International, 54(1), 382–388.

    Article  CAS  Google Scholar 

  • Murga, R., Ruiz, R., Beltran, S., & Cabezas, J. L. (2000). Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. Journal of Agricultural and Food Chemistry, 48(8), 3408–3412.

    Article  CAS  PubMed  Google Scholar 

  • Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43(1), 1–14.

    Article  CAS  Google Scholar 

  • Özkal, S. G., Yener, M. E., & Bayındırlı, L. (2005). Mass transfer modeling of apricot kernel oil extraction with supercritical carbon dioxide. The Journal of Supercritical Fluids, 35(2), 119–127.

    Article  CAS  Google Scholar 

  • Pascual-Marti, M. C., Salvador, A., Chafer, A., & Berna, A. (2001). Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta, 54(4), 735–740.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, C. G., & Meireles, M. A. (2010). Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3(3), 340–372.

    Article  CAS  Google Scholar 

  • Roy, B. C., Goto, M., & Hirose, T. (1996). Extraction of ginger oil with supercritical carbon dioxide: experiments and modeling. Industrial and Engineering Chemistry Research, 35(2), 607–612.

    Article  CAS  Google Scholar 

  • Salgin, U., Doker, O., & Calimli, A. (2006). Extraction of sunflower oil with supercritical CO2: experiments and modeling. Journal of Supercritical Fluids, 38(3), 326–331.

    Article  CAS  Google Scholar 

  • Sanal, I. S., Bayraktar, E., Mehmetoglu, U. U., & Calimli, A. (2005). Determination of optimum conditions for SC-(CO2 plus ethanol) extraction of beta-carotene from apricot pomace using response surface methodology. Journal of Supercritical Fluids, 34(3), 331–338.

    Article  CAS  Google Scholar 

  • Singleton, V., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Sökmen, M., Demir, E., & Alomar, S. Y. (2018). Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids, 133, 171–176.

    Article  CAS  Google Scholar 

  • Spinelli, S., Conte, A., Lecce, L., Padalino, L., & Del Nobile, M. A. (2016). Supercritical carbon dioxide extraction of brewer’s spent grain. Journal of Supercritical Fluids, 107, 69–74.

    Article  CAS  Google Scholar 

  • Taghvaei, M., Jafari, S. M., Assadpoor, E., Nowrouzieh, S., & Alishah, O. (2014). Optimization of microwave-assisted extraction of cottonseed oil and evaluation of its oxidative stability and physicochemical properties. Food Chemistry, 160, 90–97.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D.-S., Tian, Y.-J., He, Y.-Z., Li, L., Hu, S.-Q., & Li, B. (2010). Optimisation of ultrasonic-assisted protein extraction from brewer’s spent grain. Czech Journal of Food Sciences, 28, 9–17.

    Article  CAS  Google Scholar 

  • Vieira, E., Rocha, M. M., Coelho, E., Pinho, O., Saraiva, J. A., Ferreira, I., et al. (2014). Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products, 52, 136–143.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Province of Bolzano (Landesregierung mittels Beschluss Nr. 1472, 07.10.2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Ferrentino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrentino, G., Ndayishimiye, J., Haman, N. et al. Functional Activity of Oils from Brewer’s Spent Grain Extracted by Supercritical Carbon Dioxide. Food Bioprocess Technol 12, 789–798 (2019). https://doi.org/10.1007/s11947-019-02249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02249-3

Keywords

Navigation