Skip to main content
Log in

Effects of Ultrasonic Processing and Oil Type on Maillard Reaction of D-Glucose and L-Alanine in Oil-in-Water Systems

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study investigated the effects of high-intensity ultrasonic processing on a Maillard reaction (MR) model system of D-glucose and L-alanine and its corresponding oil-in-water systems with canola, olive, palm, and coconut oil, respectively. The MR in the water phase was significantly promoted in the olive and canola oil-MR systems with the higher depletion of reactants and the higher generation of final MR products compared with those in the oil-free-MR model system; however, the MR was suppressed in the systems of palm and coconut oils. The concentration of pyrazines with shorter side chain, e.g., 2,5-dimethylpyrazine and 2,6-dimethylpyrazine, was significantly increased in the presence of oils with a lower degree of unsaturation; meanwhile, the oils with higher degree of unsaturation suppressed the generation of the shorter side chain-pyrazines, but promoted the generation of pyrazines with a longer side chain, e.g., 2,3-diethyl-5-methylpyrazine and 3,5-diethyl-2methylpyrazine. Due to the oils undergoing ultrasonic processing at 80 °C, the oxidation of oils was significantly promoted, as reflected by a relatively low iodine value and high peroxide and p-anisidine values in the processed oils compared with those in the raw oils. On one hand, various carbonyl compounds were generated due to the lipid oxidation; meanwhile, these carbonyl compounds participated in the MR as part of intermediate MR products and subsequently generated various desired flavors. On the other hand, off-flavors coming from the oxidation of oils were also detected, which may affect the overall flavor profile of the oil-in-water MR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bruechert, L. (1989). Alkylpyrazine formation in solid model systems: the effects of temperature, added water and added corn oil. Rutgers The State University of New Jersey, PhD Thesis, 5399.

  • Burdock, G. A., & Fenaroli, G. P. D. (2010). Fenaroli’s handbook of flavor ingredients (Vol. 6th ed.). Boca Raton: CRC Press/Taylor & Francis Group.

    Google Scholar 

  • Casal, S., Malheiro, R., Sendas, A., Oliveira, B. P., & Pereira, J. A. (2010). Olive oil stability under deep-frying conditions. Food and Chemical Toxicology, 48(10), 2972–2979.

    Article  CAS  Google Scholar 

  • Chemat, Grondin, I., Costes, P., Moutoussamy, L., Sing, A. S. C., & Smadja, J. (2004a). High power ultrasound effects on lipid oxidation of refined sunflower oil. Ultrasonics Sonochemistry, 11(5), 281–285.

    Article  CAS  Google Scholar 

  • Chemat, Grondin, I., Sing, A. S. C., & Smadja, J. (2004b). Deterioration of edible oils during food processing by ultrasound. Ultrasonics Sonochemistry, 11(1), 13–15.

    Article  CAS  Google Scholar 

  • Chu, Y.-H., & Luo, S. (1994). Effects of sugar, salt and water on soybean oil quality during deep-frying. Journal of the American Oil Chemists’ Society, 71(8), 897–900.

    Article  CAS  Google Scholar 

  • Cuesta, C., Sánchez-Muniz, F., & Hernandez, I. (1991). Evaluation of nonpolar methyl esters by column and gas chromatography for the assessment of used frying olive oils. Journal of the American Oil Chemists’ Society, 68(6), 443–445.

    Article  CAS  Google Scholar 

  • Dobarganes, C., Márquez-Ruiz, G., & Velasco, J. (2000). Interactions between fat and food during deep-frying. European Journal of Lipid Science and Technology, 102(8–9), 521–528.

    Article  CAS  Google Scholar 

  • Guan, Y. G., Wang, J., Yu, S. J., Xu, X. B., & Zhu, S. M. (2010). Effects of ultrasound intensities on a glycin–maltose model system—a means of promoting Maillard reaction. International Journal of Food Science & Technology, 45(4), 758–764.

    Article  CAS  Google Scholar 

  • Guan, Y.-G., Zhang, B.-S., Yu, S.-J., Wang, X.-R., Xu, X.-B., Wang, J., Han, Z., Zhang, P. J., & Lin, H. (2011). Effects of ultrasound on a glycin–glucose model system—a means of promoting maillard reaction. Food and Bioprocess Ttechnology, 4(8), 1391–1398.

    Article  CAS  Google Scholar 

  • Hwang, H.-I., Hartman, T. G., Rosen, R. T., Lech, J., & Ho, C.-T. (1994). Formation of pyrazines from the Maillard reaction of glucose and lysine-. Alpha.-amine-15N. Journal of Agricultural and Food Chemistry, 42(4), 1000–1004.

    Article  CAS  Google Scholar 

  • Kocadağlı, T., & Gökmen, V. (2016). Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system. Food Chemistry, 211, 892–902. https://doi.org/10.1016/j.foodchem.2016.05.150.

    Article  CAS  PubMed  Google Scholar 

  • Kooyman, C., Vellenga, K., & De Wilt, H. G. J. (1977). The isomerization of d-glucose into d-fructose in aqueous alkaline solutions. Carbohydrate Research, 54(1), 33–44. https://doi.org/10.1016/S0008-6215(77)80003-7.

    Article  CAS  Google Scholar 

  • Lima, S., Dias, A. S., Lin, Z., Brandão, P., Ferreira, P., Pillinger, M., Rocha, J., Calvino-Casilda, V., & Valente, A. A. (2008). Isomerization of d-glucose to d-fructose over metallosilicate solid bases. Applied Catalysis A: General, 339(1), 21–27. https://doi.org/10.1016/j.apcata.2007.12.030.

    Article  CAS  Google Scholar 

  • Martins, S. I., & van Boekel, M. A. (2005). A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chemistry, 90(1), 257–269.

    Article  CAS  Google Scholar 

  • Martins, S. I., Marcelis, A. T., & van Boekel, M. A. (2003). Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I—reaction mechanism. Carbohydrate Research, 338(16), 1651–1663.

    Article  CAS  Google Scholar 

  • Mason, T., Paniwnyk, L., & Lorimer, J. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253–S260.

    Article  CAS  Google Scholar 

  • Mihara, S., & Masuda, H. (1988). Structure-odor relationships for disubstituted pyrazines. Journal of Agricultural and Food Chemistry, 36(6), 1242–1247.

    Article  CAS  Google Scholar 

  • Mottram, D. S. (2007). The Maillard reaction: source of flavour in thermally processed foods. In R. G. Berger (Ed.), Flavours and fragrances: chemistry, bioprocessing and sustainability (pp. 269–283). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Moussatov, A., Granger, C., & Dubus, B. (2003). Cone-like bubble formation in ultrasonic cavitation field. Ultrasonics Sonochemistry, 10(4), 191–195.

    Article  CAS  Google Scholar 

  • Naz, S., Sheikh, H., Siddiqi, R., & Asad Sayeed, S. (2004). Oxidative stability of olive, corn and soybean oil under different conditions. Food Chemistry, 88(2), 253–259. https://doi.org/10.1016/j.foodchem.2004.01.042.

    Article  CAS  Google Scholar 

  • Naz, S., Siddiqi, R., Sheikh, H., & Sayeed, S. A. (2005). Deterioration of olive, corn and soybean oils due to air, light, heat and deep-frying. Food Research International, 38(2), 127–134.

    Article  CAS  Google Scholar 

  • Negroni, M., D'Agostin, A., & Arnoldi, A. (2001). Effects of olive, canola, and sunflower oils on the formation of volatiles from the Maillard reaction of lysine with xylose and glucose. Journal of Agricultural and Food Chemistry, 49(1), 439–445.

    Article  CAS  Google Scholar 

  • Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4), 335–340. https://doi.org/10.1016/j.fuel.2004.09.016.

    Article  CAS  Google Scholar 

  • Serjouie, A., Tan, C. P., Mirhosseini, H., & Che Man, Y. (2010). Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. International Food Research Journal, 17(2), 295–302.

    Google Scholar 

  • Shibamoto, T. (1986). Odor threshold of some pyrazines. Journal of Food Science, 51(4), 1098–1099.

    Article  CAS  Google Scholar 

  • Shu, C. K., Mookherjee, B. D., Bondarovich, H. A., & Hagedorn, M. L. (1985). Characterization of bacon odor and other flavor components from the reaction of isovaleraldehyde and ammonium sulfide. Journal of Agricultural and Food Chemistry, 33(1), 130–132.

    Article  CAS  Google Scholar 

  • Specht, K., & Baltes, W. (1994). Identification of volatile flavor compounds with high aroma values from shallow-fried beef. Journal of Agricultural and Food Chemistry, 42(10), 2246–2253.

    Article  CAS  Google Scholar 

  • Whitfield, F. B., & Mottram, D. S. (1992). Volatiles from interactions of Maillard reactions and lipids. Critical Reviews in Food Science & Nutrition, 31(1–2), 1–58.

    Article  CAS  Google Scholar 

  • Yu, H., Seow, Y.-X., Ong, P. K. C., & Zhou, W. (2016). Generating Maillard reaction products in a model system of d-glucose and l-serine by continuous high-intensity ultrasonic processing. Innovative Food Science & Emerging Technologies, 36, 260–268. https://doi.org/10.1016/j.ifset.2016.07.011.

    Article  CAS  Google Scholar 

  • Yu, H., Keh, M. Z. M., Seow, Y.-X., Ong, P. K. C., & Zhou, W. (2017a). Kinetic study of high-intensity ultrasound-assisted Maillard reaction in a model system of D-glucose and L-methionine. Food and Bioprocess Technology, 10(11), 1984–1996. https://doi.org/10.1007/s11947-017-1971-7.

    Article  CAS  Google Scholar 

  • Yu, H., Seow, Y.-X., Ong, P. K. C., & Zhou, W. (2017b). Effects of high-intensity ultrasound on Maillard reaction in a model system of d-xylose and l-lysine. Ultrasonics Sonochemistry, 34, 154–163. https://doi.org/10.1016/j.ultsonch.2016.05.034.

    Article  CAS  PubMed  Google Scholar 

  • Yu, H., Gao, J., Zhong, Q., Guo, Y., Xie, Y., Yao, W., & Zhou, W. (2018a). Acoustic pressure and temperature distribution in a novel continuous ultrasonic tank reactor: a simulation study. IOP Conference Series: Materials Science and Engineering, 392(6), 062021. https://doi.org/10.1088/1757-899X/392/6/062021.

    Article  Google Scholar 

  • Yu, H., Seow, Y.-X., Ong, P. K., & Zhou, W. (2018b). Kinetic study of high-intensity ultrasound-assisted Maillard reaction in a model system of d-glucose and glycine. Food Chemistry, 269, 628–637.

    Article  CAS  Google Scholar 

  • Yu, H., Seow, Y.-X., Ong, P. K. C., & Zhou, W. (2018c). Effects of high-intensity ultrasound and oil type on the Maillard reaction of d-glucose and glycine in oil-in-water systems. npj Science of Food, 2(1), 2. https://doi.org/10.1038/s41538-017-0010-4.

    Article  Google Scholar 

  • Zamora, R., & Hidalgo, F. J. (2005). Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Critical Reviews in Food Science and Nutrition, 45(1), 49–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supports from the National First-class Discipline Program of Food Science and Technology (20180509), City Flower (Guangzhou) Ltd. through research grant R143-000-578-597 and Jiangsu Province under the Scientific Research Platform scheme BY2014139 are gratefully acknowledged. The authors also thank KH Roberts Pte. Ltd. (Singapore) for providing technical support and use of analytical resources. The first author also likes to thank the National University of Singapore (NUS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibiao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Seow, YX., Ong, P.K.C. et al. Effects of Ultrasonic Processing and Oil Type on Maillard Reaction of D-Glucose and L-Alanine in Oil-in-Water Systems. Food Bioprocess Technol 12, 325–337 (2019). https://doi.org/10.1007/s11947-018-2213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2213-3

Keywords

Navigation