Food and Bioprocess Technology

, Volume 11, Issue 6, pp 1259–1266 | Cite as

A Technological Solution to Modulate the Aroma Profile during Beer Fermentation

  • Lorenzo Guerrini
  • Giulia Angeloni
  • Piernicola Masella
  • Luca Calamai
  • Alessandro Parenti
Original Paper


During the production of fermented alcoholic beverages, such as wine or beer, the loss of aroma active compounds (AACs) has a significant impact on the overall product aroma. This paper presents the results of an experimental technique in which a condenser was placed on the top of the fermenter in order to reduce such losses. AAC concentrations in beers produced in this way were compared with a control produced without a condenser. There were two main findings: (i) some AACs could be recovered during fermentation and (ii) the technique stimulated the de novo synthesis of esters from carboxylic acids and alcohols. In particular, the production of ethyl esters from the reaction between ethanol and organic acids and the production of acetates from the reaction between acetic acid and alcohols were demonstrated. Consequently, the addition of the condenser changed the final aroma of the beverage. The effect was confirmed by a panel test and AAC quantitation using HS-SPME-GC-MS. The technique could be used by brewers as a tool to modulate the flavor and aroma of beer.


Brewing Alcoholic beverage Condensation Esterification Aroma loss Wort 


  1. Bach, H. P. (2001). Recovery of fermentation aromas. Australian Journal of Grapegrower and Winemaker, 454, 73–78.Google Scholar
  2. Barfuss, D., Mazurek, R. J., Rushmore, D., & Temperini, M. (2000). Natural cocoa aroma/flavor compositions and methods for preparing same. Patent EP 0988794 A1.Google Scholar
  3. Budwig, C., Temperini, M., & Rushmore, D. (2002). Volatile nut aroma and flavor composition and recovery thereof. Patent US 20020071890.Google Scholar
  4. Carns, L. G., & Tuot, J. (1993). Recovery of aroma gases. Patent US 5222364 A.Google Scholar
  5. Catarino, M., Ferreira, A., & Mendes, A. (2009). Study and optimization of aroma recovery from beer by pervaporation. Journal of Membrane Science, 341(1-2), 51–59.CrossRefGoogle Scholar
  6. Clapperton, J. F. (1978). Fatty acids contributing to caprylic flavour in beer. The use of profile and threshold data in flavour research. Journal of the Institute of Brewing, 84(2), 107–112.CrossRefGoogle Scholar
  7. Dack, R. E., Black, G. W., & Koutsidis, G. (2017). The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations. Food Chemistry, 232, 595–601.CrossRefGoogle Scholar
  8. De Almeida, N. E., Aguiar, I. D., & Cardoso, D. R. (2015). Mechanism of hop-derived terpenes oxidation in beer. Journal of the Brazilian Chemical Society, 26(11), 2362–2368.Google Scholar
  9. Desobgo, Z. S., Stafford, R. A., & Metcalfe, D. J. A. (2015). Dimethyl sulfide stripping behavior during wort boiling using response surface methodology. Journal of the American Society of Brewing Chemists, 1, 84–89.CrossRefGoogle Scholar
  10. Desobgo, Z. S. C., Stafford, R. A., & Metcalfe, D. J. A. (2017). Modeling of dimethyl sulfide stripping behavior when applying delayed onset of boiling during wort boiling. Journal of the American Society of Brewing Chemists, 75(3), 269–275.CrossRefGoogle Scholar
  11. Dong, L., Hou, Y., Li, F., Piao, Y., Zhang, X., Zhang, X., Li, C., & Zhao, C. (2015). Characterization of volatile aroma compounds in different brewing barley cultivars. Journal of the Science of Food and Agriculture, 95(5), 915–921.CrossRefGoogle Scholar
  12. Dragone, G., Mussatto, S. I., Oliveira, J. M., & Teixeira, J. A. (2009). Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry, 112(4), 929–935.CrossRefGoogle Scholar
  13. Fritsch, H. T., & Schieberle, P. (2005). Identification based on quantitative measurements and aroma recombination of the character impact odorants in a Bavarian pilsner-type beer. Journal of Agricultural and Food Chemistry, 53(19), 7544–7551.CrossRefGoogle Scholar
  14. Gee, D. A., & Ramirez, W. F. (1994). A flavour model for beer fermentation. Journal of the Institute of Brewing, 100(5), 321–329.CrossRefGoogle Scholar
  15. Guerrini, L., Masella, P., Spugnoli, P., Spinelli, S., Calamai, L., & Parenti, A. (2016). A condenser to recover organic volatile compounds during Vinification. American Journal of Enology and Viticulture, 67(2), 163–168.CrossRefGoogle Scholar
  16. Horák, T., Čulík, J., Jurková, M., Čejka, P., & Kellner, V. (2008). Determination of free medium-chain fatty acids in beer by stir bar sorptive extraction. Journal of Chromatography A, 1196-1197, 96–99.CrossRefGoogle Scholar
  17. Karlsson, H. O., & Trägårdh, G. (1997). Aroma recovery during beverage processing. Journal of Food Engineering, 34(2), 159–178.CrossRefGoogle Scholar
  18. Landaud, B. S., Latrille, E., Corrieu, G., Genie U. M. R, & P-G I. I. N. A. (2001). Top pressure and temperature control the fusel alcohol/ester ratio through yeast growth in beer fermentation. Journal of the Institute of Brewing, 107(2), 107–117.CrossRefGoogle Scholar
  19. Langos, D., Granvogl, M., & Schieberle, P. (2013). Characterization of the key aroma compounds in two Bavarian wheat beers by means of the sensomics approach. Journal of Agricultural and Food Chemistry, 61(47), 11303–11311.CrossRefGoogle Scholar
  20. Meilgaard, M. C., Civille, G. V., & Carr, B. T. (2006). Sensory evaluation techniques (4th ed.). Boca Raton: CRC Press.Google Scholar
  21. Meilgaard, M. C. (1975). Flavor chemistry of beer: part ii: flavour and threshold of 239 aroma volatiles. MBAA TQ, 12(3), 151–168.Google Scholar
  22. Mouret, J. R., Perez, M., Angenieux, M., Nicolle, P., Farines, V., & Sablayrolles, J. M. (2014). Online-based kinetic analysis of higher alcohol and ester synthesis during winemaking fermentations. Food and Bioprocess Technology, 7(5), 1235–1245.CrossRefGoogle Scholar
  23. Olaniran, A. O., Hiralal, L., Mokoena, M. P., & Pillay, B. (2017). Flavour-active volatile compounds in beer: production, regulation and control. Journal of the Institute of Brewing, 123(1), 13–23.CrossRefGoogle Scholar
  24. Parenti, A., Guerrini, L., (2016). Domanda No. (Patent number) 102016000122743. Ministero per lo sviluppo economico. Repubblica Italiana.Google Scholar
  25. Rodrigues, F., Caldeira, M., & Câmara, J. D. S. (2008). Development of a dynamic headspace solid-phase microextraction procedure coupled to GC–qMSD for evaluation the chemical profile in alcoholic beverages. Analytica Chimica Acta, 609(1), 82–104.CrossRefGoogle Scholar
  26. Scarlata, C. J., & Ebeler, S. E. (1999). Headspace solid-phase microextraction for the analysis of dimethyl sulfide in beer. Journal of Agricultural and Food Chemistry, 47(7), 2505–2508.CrossRefGoogle Scholar
  27. Schieberle, P. (1991). Primary odorants of pale lager beer. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 193(6), 558–565.CrossRefGoogle Scholar
  28. Solomon, T. W. G., & Fryhle, C. B. (2008). Organic chemistry (9th ed.). Hoboken: Wiley.Google Scholar
  29. Takoi, K., Koie, K., Itoga, Y., Katayama, Y., Shimase, M., Nakayama, Y., & Watari, J. (2010). Biotransformation of hop-derived monoterpene alcohols by lager yeast and their contribution to the flavor of hopped beer. Journal of Agricultural and Food Chemistry, 58(8), 5050–5058.CrossRefGoogle Scholar
  30. Verstrepen, K. J., Derdelinckx, G. U. Y., Dufour, J., Winderickx, J., Thevelein, J. M., Pretorius, I. S., & Sa, A. (2003). Flavor-active esters: adding fruitiness to beer. Journal of Bioscience and Bioengineering, 96(2), 110–118.CrossRefGoogle Scholar
  31. Wylock, C., Mballa, P. E., Heilporn, C., Debaste, F., & Fauconnier, M. L. (2015). Review on the potential technologies for aromas recovery from food industry flue gas. Trends in Food Science & Technology, 46(1), 68–74.CrossRefGoogle Scholar
  32. Zhou, A., & McFeeters, R. F. (1998). Volatile compounds in cucumbers fermented in low salt conditions. Journal of Agricultural and Food Chemistry, 46(6), 2117–2122.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lorenzo Guerrini
    • 1
  • Giulia Angeloni
    • 1
  • Piernicola Masella
    • 1
  • Luca Calamai
    • 2
    • 3
  • Alessandro Parenti
    • 1
  1. 1.Dipartimento di Gestione dei Sistemi Agrari, Alimentari e Forestali (GESAAF)Università degli Studi di FirenzeFlorenceItaly
  2. 2.Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente (DISPAA)Università degli Studi di FirenzeFlorenceItaly
  3. 3.Istituto Bioscienze e Biorisorse, (IBBR) CNRFlorenceItaly

Personalised recommendations