Food and Bioprocess Technology

, Volume 11, Issue 5, pp 1075–1086 | Cite as

Effect of Low-pressure Cold Plasma (LPCP) on the Wettability and the Inactivation of Escherichia coli and Listeria innocua on Fresh-Cut Apple (Granny Smith) Skin

  • Luis A. Segura-Ponce
  • Juan E. Reyes
  • Gissella Troncoso-Contreras
  • Guineth Valenzuela-Tapia
Original Paper


The aim of this study was to investigate the effect of low-pressure cold plasma (LPCP) on the inactivation of Escherichia coli and Listeria innocua on fresh-cut apple skin and its influence on wettability. Cold plasma treatments have shown to be effective to decontaminate foods, but their effect on the wettability has not been well studied. Surface-inoculated apple samples were treated with argon (Ar), nitrogen (N2), oxygen (O2), and argon-oxygen (Ar-O2) cold plasma using a commercial LPCP unit. Three different models were used to fit bacterial survival curves after the LPCP treatments. Changes in surface wettability were also determined by measuring the contact angle. The LPCP treatments using Ar, O2, or Ar-O2 mixture for 20 min were the most effective to inactivate E. coli with O2, while the LPCP treatment with N2 for 20 min reduced L. innocua the most for (p < 0.05). The highest increase in surface wettability was observed in samples treated for 20 min with O2 and Ar-O2. Different LPCP treatments have not great effectivity on the inactivation of E. coli and L. innocua on fresh-cut apple surface, but the all treatments changed the surface wettability of apples, making it more hydrophilic. This can be considered as a negative effect of the LPCP treatment because it can facilitate the adhesion and proliferation of re-contaminating microorganisms. More research should be undertaken to explore the use of other gases and complex surfaces.


Low-pressure cold plasma Escherichia coli Listeria innocua Contact angle Wettability 


Funding Information

Financial support from CONICYT-Chile through project FONDECYT No 1120342 is greatly appreciated.


  1. Adamson, A., & Gast, A. (1997). Physical chemistry of surfaces (6th ed.). New York: Wiley.Google Scholar
  2. Artés, F., & Allende, A. (2005). Minimal fresh processing of vegetables, fruits and juices. Emerging Technologies for Food Processing, 26.
  3. Baier, M., Foerster, J., Schnabei, U., Knorr, D., Ehlbeck, J., Herppich, W. B., & Schluter, O. (2013). Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biology and Technology, 84, 81–87.CrossRefGoogle Scholar
  4. Berger, N. C., Sodha, V. S., Shaw, K. R., Griffin, M. P., Pink, D., Hand, P., & Frankel, G. (2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental Microbiology, 12(9), 2385–2397.CrossRefGoogle Scholar
  5. Bermúdez-Aguirre, D., & Corradini, M. G. (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: a review. Food Research International, 45(2), 700–712.CrossRefGoogle Scholar
  6. Bermúdez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G., & Garcia-Perez, M. (2013). Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control, 34(1), 149–157.CrossRefGoogle Scholar
  7. Boulange-Petermann, L., Baroux, B., & Bellon-Fontaine, M.-N. (1993). The influence of metallic surface wettability on bacterial adhesion. Journal of Adhesion Science and Technology, 7(3), 221–230.CrossRefGoogle Scholar
  8. Bußler, S., Ehlbeck, J., & Schlüter, O. K. (2017). Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science & Emerging Technologies, 40, 78–86.CrossRefGoogle Scholar
  9. CDC (Centers for Disease Control and Prevention). (2016). List of selected multistate foodborne outbreak investigations 2006–2016. Accessed 18 May 2017.
  10. Chen, Z., & Zhu, C. (2011). Modelling inactivation by aqueous chlorine dioxide of Dothiorella gregaria Sacc. and Fusarium tricinctum (Corda) Sacc. spores inoculated on fresh chestnut kernel. Letters in Applied Microbiology, 52(6), 676–684.CrossRefGoogle Scholar
  11. Dullien, F. A. L. (1992). Porous media (2th ed.). San Diego: Academic Press.Google Scholar
  12. Felix, T., Cassini, F. A., Benetoli, L. O. B., Dotto, M. E. R., & Debacher, N. A. (2017). Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws. Applied Surface Science, 403, 57–61.CrossRefGoogle Scholar
  13. Fernández, A., Noriega, E., & Thompson, A. (2013). Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology, 33(1), 24–29.CrossRefGoogle Scholar
  14. Fernández, A., Shearer, N., Wilson, D. R., & Thompson, A. (2012). Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 152(3), 175–180.CrossRefGoogle Scholar
  15. Francis, G. A., Gallone, A., Nychas, G. J., Sofos, J. N., Colelli, G., Amodio, M. L., & Spano, G. (2012). Factors affecting quality and safety of fresh-cut produce. Critical Reviews in Food Science and Nutrition, 52(7), 595–610.CrossRefGoogle Scholar
  16. Han, L., Patil, S., Boehm, D., Milosavljevic, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458.CrossRefGoogle Scholar
  17. Han, L., Patil, S., Keener, K. M., Cullen, P. J., & Bourke, P. (2014). Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA damage. Journal of Applied Microbiology, 116(4), 784–794.CrossRefGoogle Scholar
  18. Jahid, I. K., Han, N., & Ha, S. D. (2014). Inactivation kinetics of cold oxygen plasma depends on incubation conditions of Aeromonas hydrophila biofilm on lettuce. Food Research International, 55, 181–189.CrossRefGoogle Scholar
  19. Ji, J., & Zhang, W. (2009). Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. Journal of Biomedical Materials Research Part A, 88A(2), 448–453.CrossRefGoogle Scholar
  20. Joshi, S. G., Cooper, M., Yost, A., Paff, M., Ercan, U. K., Fridman, G., Friedman, G., Fridman, A., & Brooks, A. D. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy, 55(3), 1053–1062.CrossRefGoogle Scholar
  21. Kim, J. E., Lee, D.-U., & Min, S. C. (2014). Microbial decontamination of red pepper powder by cold plasma. Food Microbiology, 38, 128–136.CrossRefGoogle Scholar
  22. Kvam, E., Davis, B., Mondello, F., & Garner, A. L. (2012). Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrobial Agents and Chemotherapy, 56(4), 2028–2036.CrossRefGoogle Scholar
  23. Lee, J. H., Khang, G., Lee, J. W., & Lee, H. B. (1998). Interaction of different types of cells of polymer surfaces with wettability gradient. Journal of Colloid and Interface Science, 205(2), 323–330.CrossRefGoogle Scholar
  24. Lee, H., Kim, J. E., Chung, M.-S., & Min, S. C. (2015a). Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiology, 51, 74–80.CrossRefGoogle Scholar
  25. Lee, T., Puligundla, P., & Mok, C. (2015b). Inactivation of foodborne pathogens on the surfaces of different packaging materials using low-pressure air plasma. Food Control, 51, 149–155.CrossRefGoogle Scholar
  26. Lerouge, S., Wertheimer, M., Marchand, R., Tabrizian, M., & Yahia, L. (2000). Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization. Journal of Biomedical Materials Research, 51(1), 128–135.CrossRefGoogle Scholar
  27. Liao, H., Kong, X., Zhang, Z., Liao, X., & Hu, X. (2010). Modeling the inactivation of Salmonella typhimurium by dense phase carbon dioxide in carrot juice. Food Microbiology, 27(1), 94–100.CrossRefGoogle Scholar
  28. Linton, R. H., Carter, W. H., Pierson, M. D., & Hackney, C. R. (1995). Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. Journal of Food Protection, 58(9), 946–954.CrossRefGoogle Scholar
  29. Losio, M. N., Pavoni, E., Bilei, S., Bertasi, B., Bove, D., Capuano, F., Farneti, S., Blasi, G., Comin, D., Cardamone, C., Decastelli, L., Delibato, E., De Santis, P., Di Pasquade, S., Gattuso, A., Goffredo, E., Fadda, A., Pisanu, M., & De Medici, D. (2015). Microbiological survey of raw and ready-to-eat leafy green vegetables marketed in Italy. International Journal of Food Microbiology, 210, 88–91.CrossRefGoogle Scholar
  30. Mahmoud, B.S.M. (2010). The effects of X-ray radiation on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri inoculated on whole Roma tomatoes. Food Microbiology, 27(8), 1057–1063.Google Scholar
  31. Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6(1).
  32. Mai-Prochnow, A., Murphy, A. B., McLean, K. M., Kong, M. G., & Ostrikov, K. (2014). Atmospheric pressure plasmas: infection control and bacterial responses. International Journal of Antimicrobial Agents, 43(6), 508–517.CrossRefGoogle Scholar
  33. Meylheuc, T., Giovannacci, I., Briandet, R., & Bellon-Fontaine, M.-N. (2002). Comparison of the cell surface properties and growth characteristics of Listeria monocytogenes and Listeria innocua. Journal of Food Protection, 65(5), 786–793.CrossRefGoogle Scholar
  34. Min, S. C., Roh, S. H., Niemira, B. A., Sites, J. E., Boyd, G., & Lacombe, A. (2016). Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology, 237, 114–120.CrossRefGoogle Scholar
  35. Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39–47.CrossRefGoogle Scholar
  36. Montie, T. C., Kelly-Wintenberg, K., & Roth, J. R. (2000). An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactions on Plasma Science, 28(1), 41–50.CrossRefGoogle Scholar
  37. Mozes, N., & Rouxhet, P. G. (1987). Methods for measuring hydrophobicity of microorganisms. Journal of Microbiological Methods, 6(2), 99–112.CrossRefGoogle Scholar
  38. Nguyen-the, C., & Carlin, F. (1994). The microbiology of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 34(4), 371–401.CrossRefGoogle Scholar
  39. Niemira, B. A., & Sites, J. (2008). Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. Journal of Food Protection, 71(7), 1357–1365.CrossRefGoogle Scholar
  40. Niemira, B. C. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3(1), 125–142.CrossRefGoogle Scholar
  41. Nishime, T. M. C., Borges, A. C., Koga-Ito, C. Y., Machida, M., Hein, L. R. O., & Kostov, K. G. (2016). Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surface and Coatings Technology, 312, 19–24.CrossRefGoogle Scholar
  42. Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: a review. Food Microbiology, 32(1), 1–19.CrossRefGoogle Scholar
  43. Park, E. J., Alexander, E., Taylor, G. A., Costa, R., & Kang, D. H. (2008). Fate of foodborne pathogens on green onions and tomatoes by electrolysed water. Letter in Applied Microbiology, 46(5), 519–525.CrossRefGoogle Scholar
  44. Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: a feasibility study on radicchio (red chicory, Cichorium intybus L.) Food Control, 60, 552–559.CrossRefGoogle Scholar
  45. Peleg, M. (1999). On calculating sterility in thermal and non-thermal preservation methods. Food Research International, 32(4), 271–278.CrossRefGoogle Scholar
  46. Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science, 38(5), 353–380.CrossRefGoogle Scholar
  47. Peleg, M., & Penchina, C. M. (2000). Modeling microbial survival during exposure to a lethal agent with varying intensity. Critical Reviews in Food Science and Nutrition, 40(2), 159–172.CrossRefGoogle Scholar
  48. Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Research International, 44(7), 1875–1887.CrossRefGoogle Scholar
  49. Sant'Ana, A. S., Franco, B. D., & Schaffner, D. W. (2014). Risk of infection with Salmonella and Listeria monocytogenes due to consumption of ready-to-eat leafy vegetables in Brazil. Food Control, 42, 1–8.CrossRefGoogle Scholar
  50. Sarangapani, C., Devi, R. Y., Thirumdas, R., Trimukhe, A. M., Deshmukh, R. R., & Annapure, U. S. (2017). Physico-chemical properties of low-pressure plasma treated black gram. LWT-Food Science and Technology, 79, 102–110.CrossRefGoogle Scholar
  51. Sen, Y., & Mutlu, M. (2012). Sterilization of food contacting surfaces via non-thermal plasma treatment: a model study with Escherichia coli contaminated stainless steel and polyethylene surfaces. Food and Bioprocess Technology, 6, 3295–3304.CrossRefGoogle Scholar
  52. Song, H. P., Kim, B., Choe, J. H., Jung, S., Moon, S. Y., Choe, W., & Jo, C. (2009). Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiology, 26(4), 432–436.CrossRefGoogle Scholar
  53. Syromotina, D. S., Surmenev, R. A., Surmeneva, M. A., Boyandin, A. N., Nikolaeva, E. D., Prymak, O., & Volova, T. G. (2016). Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Materials Science and Engineering: C, 62, 450–457.CrossRefGoogle Scholar
  54. Tappi, S., Berardinelli, A., Ragni, L., Dalla Rosa, M., Guarnieri, A., & Rocculi, P. (2014). Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies, 21, 114–122.CrossRefGoogle Scholar
  55. Tappi, S., Ragni, L., Tylewicz, U., Romani, S., Ramazzina, I., & Rocculi, P. (2018). Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment. Innovative Food Science & Emerging Technologies.
  56. te Giffel, M. G., & Zwietering, M. H. (1999). Validation of predictive models describing the growth of Listeria monocytogenes. International Journal of Food Microbiology, 46(2), 135–149.CrossRefGoogle Scholar
  57. Thirumdas, R., Saragapani, C., Ajinkya, M. T., Deshmukh, R. R., & Annapure, U. S. (2016). Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Science & Emerging Technologies, 37, 53–60.CrossRefGoogle Scholar
  58. Warriner, K., Huber, A., Namvar, A., Fan, W., & Dunfield, K. (2009). Recent advances in the microbial safety of fresh fruits and vegetables. Advances in Food and Nutrition Reserch, 57, 155–208.CrossRefGoogle Scholar
  59. Whipps, J. M., Hand, P., Pink, D. A., & Bending, G. D. (2008). Human pathogens and the phyllosphere. Advances in Applied Microbiology, 64, 183–221.CrossRefGoogle Scholar
  60. Yang, L., Chen, J., & Gao, J. (2009). Low temperature argon plasma sterilization effect on Pseudomonas aeruginosa and its mechanisms. Journal of Electrostatics, 67(4), 646–651.CrossRefGoogle Scholar
  61. Yu, H., Perni, S., Shi, J. J., Wang, D. Z., Kong, M. G., & Shama, G. (2006). Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. Journal of Applied Microbiology, 101(6), 1323–1330.CrossRefGoogle Scholar
  62. Zhang, S., Wu, Q., Zhang, J., Lai, Z., & Zhu, X. (2016). Prevalence, genetic diversity, and antibiotic resistance of enterotoxigenic Escherichia coli in retail ready-to-eat foods in China. Food Control, 68, 236–243.CrossRefGoogle Scholar
  63. Zhang, X., Wang, L., & Levänen, E. (2013). Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Advances, 3(30), 12003–12020.CrossRefGoogle Scholar
  64. Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109–116.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Luis A. Segura-Ponce
    • 1
  • Juan E. Reyes
    • 1
  • Gissella Troncoso-Contreras
    • 1
  • Guineth Valenzuela-Tapia
    • 1
  1. 1.Food Engineering DepartmentUniversidad del Bío-BíoChillánChile

Personalised recommendations