Albuquerque, P. B. S., Coelho, L. C. B. B., Teixeira, J. A., & Carneiro-da-Cunha, M. G. (2016). Approaches in biotechnological applications of natural polymers. AIMS Molecular Science, 3(3), 386–425. https://doi.org/10.3934/molsci.2016.3.386.
CAS
Article
Google Scholar
Barbosa, K. B. F., Costa, N. M. B., Alfenas, R. C. G., De Paula, S. O., Minim, V. P. R., & Bressan, J. (2010). Oxidative stress: concept, implications and modulating factors. Brazilian Jornal of Nutrition, 23(4), 629–643.
CAS
Google Scholar
Bastarrachea, L. J., Wong, D. E., Roman, M. J., Lin, Z., & Goddard, J. M. (2015). Active packaging coatings. Coatings, 5, 771–791.
CAS
Article
Google Scholar
Busolo, M. A., & Lagaron, J. M. (2015). Antioxidant polyethylene films based on a resveratrol containing clay of interest in food packaging applications. Food Packaging and Shelf Life, 6, 30–41. https://doi.org/10.1016/j.fpsl.2015.08.004.
Article
Google Scholar
Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Carvalho, S., Quintas, M. A. C., Teixeira, J. A., et al. (2010). Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 82(1), 153–159. https://doi.org/10.1016/j.carbpol.2010.04.043.
CAS
Article
Google Scholar
Carrizo, D., Taborda, G., Nerín, C., & Bosetti, O. (2016). Extension of shelf life of two fatty foods using a new antioxidante multilayer packaging containing green tea extract. Innovative Food Science and Emerging Technologies, 33, 534–541. https://doi.org/10.1016/j.ifset.2015.10.018.
CAS
Article
Google Scholar
Chen, W., Shen, X., Hu, H., Xu, K., Ran, Q., Yu, Y., et al. (2017). Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis. Biomaterials, 114, 82–96. https://doi.org/10.1016/j.biomaterials.2016.10.055.
CAS
Article
Google Scholar
De Castro, C. M. M. B., Nahori, M. A., Dumarey, C. H., Vargaftig, B. B., & Bachelet, M. (1995). Fenspiride: an anti-inflammatory drug with potential benefits in the treatment of endotoxemia. European Journal of Pharmacology, 294(2-3), 669–676. https://doi.org/10.1016/0014-2999(95)00608-7.
Article
Google Scholar
Ebrahimiasl, S., Zakaria, A., Kassim, A., & Basri, S. N. (2015). Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities. International Journal of Nanomedicine, 10, 217–227. https://doi.org/10.2147/IJN.S69740.
CAS
Google Scholar
Fabra, M. J., Flores-López, M. L., Cerqueira, M. A., Rodriguez, D. J., Lagaron, J. M., & Vicente, A. A. (2016). Layer-by-layer technique to developing functional nanolaminate films with antifungal activity. Food and Bioprocess Technology, 9(3), 471–480. https://doi.org/10.1007/s11947-015-1646-1.
CAS
Article
Google Scholar
Feder, L. S., & Laskin, D. L. (1994). Regulation of hepatic endothelial cell and macrophage proliferation and nitric oxide production by GM-CSF, M-CSF, and lL-13 following acute endotoxemia. Journal of Leukocyte Biology, 55(4), 507–513. https://doi.org/10.1002/jlb.55.4.507.
CAS
Article
Google Scholar
Fu, J., Ji, J., Yuan, W., & Shen, J. (2005). Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials, 26(33), 6684–6692. https://doi.org/10.1016/j.biomaterials.2005.04.034.
CAS
Article
Google Scholar
Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133–145. https://doi.org/10.1016/S0924-0136(02)00060-2.
Article
Google Scholar
Gand, A., Hindié, M., Chacon, D., Tassel, P. R. V., & Pauthe, E. (2014). Nanotemplated polyelectrolyte films as porous biomolecular delivery systems. Biomatter, 4(1), e28823. https://doi.org/10.4161/biom.28823.
Article
Google Scholar
Guzmán, E., Mateos-Maroto, A., Ruano, M., Ortega, F., & Rubio, R. G. (2017). Layer-by-layer polyelectrolyte assemblies for encapsulation and release of active compounds. Advances in Colloid and Interface Science, 249, 290–307. https://doi.org/10.1016/j.cis.2017.04.009.
Article
Google Scholar
ISO 10993-5. (2009). International standard for biological evaluation of medical devices––part 5: tests for in vitro cytotoxicity.
Jones, O., Decker, E. A., & McClements, D. J. (2010). Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, 24(2-3), 239–248. https://doi.org/10.1016/j.foodhyd.2009.10.001.
CAS
Article
Google Scholar
Kao, W. J. (1999). Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials, 20(23–24), 2213–2221. https://doi.org/10.1016/S0142-9612(99)00152-0.
CAS
Article
Google Scholar
Kononova, S. V., Volod’ko, A. V., Petrova, V. A., Kruchinina, E. V., Baklagina, Y. G., Chusovitin, E. A., & Skorik, Y. A. (2018). Pervaporation multilayer membranes based on a polyelectrolyte complex of λ-carrageenan and chitosan. Carbohydrate Polymers, 181, 86–92. https://doi.org/10.1016/j.carbpol.2017.10.050.
CAS
Article
Google Scholar
Limpisophon, K., & Schleining, G. (2017). Use of gallic acid to enhance the antioxidant and mechanical properties of active fish gelatin film. Journal of Food Science, 82(1), 80–89. https://doi.org/10.1111/1750-3841.13578.
CAS
Article
Google Scholar
Lith, R. V., Gregory, E. K., Yang, J., Kibbe, M. R., & Ameer, G. A. (2014). Engineering biodegradable polyester elastomers with antioxidante properties to attenuate oxidative stress in tissues. Biomaterials, 35(28), 8113–8122. https://doi.org/10.1016/j.biomaterials.2014.06.004.
Article
Google Scholar
Liu, S., & Li, L. (2016). Thermoreversible gelation and scaling behavior of Ca2+-induced κ-carrageenan hydrogels. Food Hydrocolloids, 61, 793–800. https://doi.org/10.1016/j.foodhyd.2016.07.003.
CAS
Article
Google Scholar
Liu, Y., He, T., & Gao, C. (2005). Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to constructo cytocompatible layer for human endothelial cells. Colloids and Surfaces B: Biointerfaces, 46(2), 117–126. https://doi.org/10.1016/j.colsurfb.2005.09.005.
CAS
Article
Google Scholar
Liu, Q., Wu, J., Lim, Z. Y., Aggarwal, A., Yang, H., & Wang, S. (2017). Evaluation of the metabolic response of Escherichia coli to electrolysed water by 1H NMR spectroscopy. LWT - Food Science and Technology, 79, 428–436. https://doi.org/10.1016/j.lwt.2017.01.066.
CAS
Article
Google Scholar
Manzocco, L., Valoppi, F., Calligaris, S., Andreatta, F., Spilimbergo, S., & Nicoli, M. C. (2017). Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocolloids, 71, 68–75. https://doi.org/10.1016/j.foodhyd.2017.04.021.
CAS
Article
Google Scholar
Medeiros, B. G. S., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2012). Polysaccharide/protein nanomultilayer coatings: construction, characterization and evaluation of their effect on ‘Rocha’ pear (Pyrus communis L.) shelf-life. Food and Bioprocess Technology, 5(6), 2435–2445. https://doi.org/10.1007/s11947-010-0508-0.
CAS
Article
Google Scholar
Medeiros, B. G. S., Souza, M. P., Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Physical characterisation of an alginate/lysozyme nanolaminate coating and its evaluation on ‘Coalho’ cheese shelf life. Food and Bioprocess Technology, 7(4), 1088–1098. https://doi.org/10.1007/s11947-013-1097-5.
CAS
Article
Google Scholar
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of lmmunological Methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.
CAS
Article
Google Scholar
Necas, J., & Bartosikova, L. (2013). Carrageenan: a review. Veterinární Medicína, 58(4), 187–205.
CAS
Article
Google Scholar
Newman, A. W., & Kwok, D. Y. (1999). Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 81(3), 167–249.
Article
Google Scholar
Pauthe, E., & Tassel, P. R. V. (2014). Layer-by-layer films as biomaterials: bioactivity and mechanics. Journal of Biomaterials Science, 25(14-15), 1489–1501. https://doi.org/10.1080/09205063.2014.921096.
CAS
Article
Google Scholar
Peng, L., Li, H., & Meng, Y. (2016). Layer-by-layer structured polysaccharides-based multilayers on cellulose acetate membrane: towards better hemocompatibility, antibacterial and antioxidant activities. Applied Surface Science, 401, 25–39.
Article
Google Scholar
Pinheiro, A. C., Bourbon, A. I., Medeiros, B. G. S., Silva, L. H. M., Silva, M. C. H., Carneiro-da-Cunha, M. G., et al. (2012). Interactions between κ-carrageenan and chitosan in nanolayered coatings-structural and transport properties. Carbohydrate Polymers, 87(2), 1081–1090. https://doi.org/10.1016/j.carbpol.2011.08.040.
CAS
Article
Google Scholar
Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., & Russo, G. L. (2012). The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochemical Pharmacology, 83(1), 6–15. https://doi.org/10.1016/j.bcp.2011.08.010.
CAS
Article
Google Scholar
Souza, M. P., Vaz, A. F. M., Correia, M. T. S., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food and Bioprocess Technlogy, 7(4), 1149–1159. https://doi.org/10.1007/s11947-013-1160-2.
CAS
Article
Google Scholar
Souza, M. P., Vaz, A. F. M., Cerqueira, M. A., Texeira, J. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2015a). Effect of an edible nanomultilayer coating by electrostatic self-assembly on the shelf life of fresh-cut mangoes. Food and Bioprocess Technology, 8(3), 647–654. https://doi.org/10.1007/s11947-014-1436-1.
CAS
Article
Google Scholar
Souza, M. P., Vaz, A. F. M., Silva, H. D., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2015b). Development and characterization of an active chitosan-based film containing quercetin. Food and Bioprocess Technlogy, 8(11), 2183–2191. https://doi.org/10.1007/s11947-015-1580-2.
CAS
Article
Google Scholar
Stenner, R., Matubayasi, N., & Shimizu, S. (2016). Gelation of carrageenan: effects of sugars and polyols. Food Hydrocolloids, 54, 284–292. https://doi.org/10.1016/j.foodhyd.2015.10.007.
CAS
Article
Google Scholar
Toledo, C. E. P., Souza, M. A., Fraga, M. R., Ribeiro, L. C., Ferreira, A. P., & Vitral, R. W. F. (2012). Cellular viability and nitric oxide (NO) production by J774 macrophages in the presence of orthodontic archwires. Journal Biomedical Science and Engineering, 5(05), 255–262. https://doi.org/10.4236/jbise.2012.55032.
CAS
Article
Google Scholar
Vera, P., Echegoyen, Y., Canellas, E., Nerín, C., Palomo, M., Madrid, Y., & Cámara, C. (2016). Nano selenium as antioxidant agent in a multilayer food packaging material. Analytical and Bioanalytical Chemistry, 408(24), 6659–6670. https://doi.org/10.1007/s00216-016-9780-9.
CAS
Article
Google Scholar
Xia, Z., & Triffitt, J. T. (2006). A review on macrophage responses to biomaterials. Biomedical Materials, 1, 1–9.
Article
Google Scholar
Yang, Z., Yang, H., & Yang, H. (2018). Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel. Food Hydrocolloids, 75, 164–173. https://doi.org/10.1016/j.foodhyd.2017.08.032.
CAS
Article
Google Scholar