Advertisement

Food and Bioprocess Technology

, Volume 11, Issue 5, pp 1002–1011 | Cite as

Effect of Wheat Germ Heat Treatment by Fluidised Bed on the Kinetics of Lipase Inactivation

  • Renato D. Gili
  • María Cecilia Penci
  • Martín R. Torrez Irigoyen
  • Sergio A. Giner
  • Pablo D. Ribotta
Original Paper

Abstract

Wheat germ is scrapped during milling due to their unfavourable baking properties and rapid deterioration. Although it is a low-cost by-product with remarkable nutritional features, its widespread utilisation is limited by the action of enzymes. On that basis, the effect of the germ stabilisation process by fluidisation with hot air was studied. Fluidisation, carried out with air between 90 and 150 °C, generated notable lipase inactivation, which reached a minimum residual activity of 15.5% from original. The total tocopherol contents of stabilised samples were not significantly affected. Colour attributes of treated samples showed slight changes compared with raw wheat germ. A mathematical model was fitted to colour data to predict the changes due to heat. A first-order kinetic model was applied to descript the thermal lipase inactivation. The inactivation rate constant, D value, Z value and the activation energy were calculated for this process. The results obtained in this study are expected to contribute to the optimisation of wheat germ stabilisation by fluidisation. This process may enable to obtain a food with good nutritional features for human consumption from a co-product of the wheat milling industry at a short time and high temperature.

Keywords

Fluidisation Wheat germ Thermal kinetic inactivation Lipase activity Tocopherols 

Abbreviations

BI

Browning index

BI0

Browning index before thermal treatment

BIMAX

Maximum browning index reached in the thermal treatment

D

Decimal time, s

Ea

Activation energy (kJ mol−1)

FFA

Free fatty acids content, g of oleic acid kg−1 of oil

FFA0

Free fatty acids content before incubation, g of oleic acid kg−1 of oil

FFA48

Free fatty acids content after 48 h of incubation, g of oleic acid kg−1 of oil

ΔFFA

Change in free fatty acids content, g of oleic acid kg−1 of oil

kBI

Browning rate constant, s−1

k

Enzyme inactivation rate constant, s−1

PV

Peroxide value, meq O2 kg−1 oil

R

Universal gas constant, 8.314, kJ kmol−1 K−1

t

Time, s

\( {t}_{\frac{1}{2}} \)

Time which the half of the maximum BI is reached, s

T

Inlet air temperature, °C

TTC

Total tocopherol content, mg kg−1 oil

WI

Whiteness index

Z Z

value, °C

Notes

Acknowledgements

The authors would like to thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP11220120100184), the Secretaría de Ciencia y Tecnología of Universidad Nacional de Córdoba (SeCyT-UNC) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT2013 N°2327) for the financial support.

References

  1. A.A.C.C (2000). American Association of Cereal Chemists. Approved methods of the American Association of Cereal Chemists. (A of C Chemists Ed.) (9 th ed.). St., Paul, Minnesota, USA: American Association of Cereal Chemists.Google Scholar
  2. Anthon, G. E., & Barrett, D. M. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. doi: https://doi.org/10.1021/jf011698i
  3. AOCS. (2009). Official methods and recommended practices of the American Oil Chemists’ Society. (A. O. C. Society, Ed.). Champaing, Il, USA: AOCS Press.Google Scholar
  4. Bansal, S., & Sudha, M. L. (2011). Nutritional, microstructural, rheological and quality characteristics of biscuits using processed wheat germ. International journal of food sciences and nutrition, 62(D), 474–479.  https://doi.org/10.3109/09637486.2010.549116.CrossRefGoogle Scholar
  5. Barnes, H. M. (1948). Process of stabilizing organic materials and products of said process.Google Scholar
  6. Barnes, P. J., & Taylor, P. W. (1980). The composition of acyl lipids and tocopherols in wheat germ oils from various sources. Journal of the science of food and agriculture, 31, 997–1006.CrossRefGoogle Scholar
  7. Bedford, D., Claro, J., Giusti, A. M., Karumathy, G., Lucarelli, L., Mancini, D., et al. (2017). Food Outlook. BIANNUAL REPORT ON GLOBAL FOOD MARKETS. Italy: Rome.Google Scholar
  8. Capitani, M., Mateo, C. M., & Nolasco, S. M. (2011). Effect of temperature and storage time of wheat germ on the oil tocopherol concentration. Brazilian Journal of Chemical Engineering, 28(2), 243–250.  https://doi.org/10.1590/S0104-66322011000200008.CrossRefGoogle Scholar
  9. De Vasconcelos, M. C. B. M. C. B. M. M., Bennett, R., Castro, C., Cardoso, P., Saavedra, M. J., & Rosa, E. A. (2013). Study of composition, stabilization and processing of wheat germ and maize industrial by-products. Industrial Crops and Products, 42(1), 292–298.  https://doi.org/10.1016/j.indcrop.2012.06.007.CrossRefGoogle Scholar
  10. Engelsen, M. M., & Hansen, Å. (2009). Tocopherol and tocotrienol content in commercial wheat mill streams. Cereal Chemistry, 86(5), 499–502.  https://doi.org/10.1094/CCHEM-86-5-0499.CrossRefGoogle Scholar
  11. FAO/WHO. (2015). Standart for edible fats and oils, CODEX STAN 19–1981. Codex Almentarius, 2–7. http://www.fao.org/input/download/standards/74/CXS_019e_2015.pdf
  12. Ferrara, P. J., Ridge, R. D., & Benson, J. T. (1991). Method of producing shelf stable wheat germ.Google Scholar
  13. Ganthavorn, C., Nagel, C. W., & Powers, J. R. (1991). Thermal inactivation of asparagus lipoxygenase and peroxidase. Journal of Food Science, 56(1), 47–49.  https://doi.org/10.1111/j.1365-2621.1991.tb07972.x.CrossRefGoogle Scholar
  14. Gili, R. D., Palavecino, P. M., Cecilia Penci, M., Martinez, M. L., & Ribotta, P. D. (2017a). Wheat germ stabilization by infrared radiation. Journal of Food Science and Technology, 54(1), 71–81.  https://doi.org/10.1007/s13197-016-2437-z.CrossRefGoogle Scholar
  15. Gili, R. D., Torrez Irigoyen, R. M., Penci, M. C., Giner, S. A., & Ribotta, P. D. (2017b). Physical characterization and fluidization design parameters of wheat germ. Journal of Food Engineering, 212, 29–37.  https://doi.org/10.1016/j.jfoodeng.2017.05.011.CrossRefGoogle Scholar
  16. Giner, S. A., & Calvelo, A. (1987). Modelling of wheat drying in fluidized beds. Journal of Food Science, 52(5), 1358–1363.  https://doi.org/10.1111/j.1365-2621.1987.tb14082.x.CrossRefGoogle Scholar
  17. Grandel, F. (1959). Process of making germ flakes.Google Scholar
  18. del Hernández Sánchez, M. R., Cuvelier, M.-E., & Turchiuli, C. (2016). Effect of α-tocopherol on oxidative stability of oil during spray drying and storage of dried emulsions. Food Research International, 88, 32–41.  https://doi.org/10.1016/j.foodres.2016.04.035.CrossRefGoogle Scholar
  19. Ibanoǧlu, E. (2002). Kinetic study on colour changes in wheat germ due to heat. Journal of Food Engineering, 51(3), 209–213.  https://doi.org/10.1016/S0260-8774(01)00057-7.CrossRefGoogle Scholar
  20. Jha, P. K., Kudachikar, V. B., & Kumar, S. (2013). Lipase inactivation in wheat germ by gamma irradiation. Radiation Physics and Chemistry, 86, 136–139.  https://doi.org/10.1016/j.radphyschem.2013.01.018.CrossRefGoogle Scholar
  21. Kermasha, S., Bisakowski, B., Ramaswamy, H., & Van De Voort, F. (2007). Comparison of microwave, conventional and combination heat treatments on wheat germ lipase activity. International Journal of Food Science & Technology, 28(6), 617–623.  https://doi.org/10.1111/j.1365-2621.1993.tb01313.x.CrossRefGoogle Scholar
  22. Li, B., Zhao, L., Chen, H., Sun, D., Deng, B., Li, J., et al. (2016). Inactivation of lipase and lipoxygenase of wheat germ with temperature-controlled short wave infrared radiation and its effect on storage stability and quality of wheat germ oil. PLOS ONE, 11(12), e0167330.  https://doi.org/10.1371/journal.pone.0167330.CrossRefGoogle Scholar
  23. Liu, F., Niu, L., Li, D., Liu, C., & Jin, B. (2013). Kinetic characterization and thermal inactivation of peroxidase in aqueous extracts from sweet corn and waxy corn. Food and Bioprocess Technology, 6(10), 2800–2807.  https://doi.org/10.1007/s11947-012-0996-1.CrossRefGoogle Scholar
  24. Magariño, M., Mateo, C. M., & Nolasco, S. M. (2015). Kinetics of tocopherol degradation during the storage of wheat germ oil. Canadian Journal of Chemical Engineering, (AUGUST). doi: https://doi.org/10.1002/cjce.22316
  25. Martinez, C. S., Ribotta, P. D., Leon, A. E., & Añon, M. C. (2012). Colour assessment on bread wheat and triticale fresh pasta. International Journal of Food Properties, 15(5), 1054–1068.CrossRefGoogle Scholar
  26. Matsui, K. N., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88(2), 169–176.  https://doi.org/10.1016/j.jfoodeng.2008.02.003.CrossRefGoogle Scholar
  27. McKellar, R. C. (1989). Enzymes of Psychrotrophs in Raw Food. (R. C. McKellar, Ed.). Boca Raton, Florida, USA: CRC Press.Google Scholar
  28. Meriles, S. P., Penci, M. C., Gili, R. D., Martinez, M. L., & Ribotta, P. D. (2016). Efecto del tratamiento térmico sobre la cinética de inactivación de enzimas lipasa y lipoxigenasa del germen de trigo. In A. E. León, V. Rosati, & C. W. Robledo (Eds.), VI Congreso Internacional de Ciencia y Tecnología de los Alimentos 2016: libro de actas, resúmenes (1 st ed., p. 835). Córdoba: Ministerio de Ciencia y Tecnología de la provincia de Córdoba.Google Scholar
  29. Murthy, K. V., Ravi, R., Bhat, K. K., & Raghavarao, K. S. M. S. (2008). Studies on roasting of wheat using fluidized bed roaster. Journal of Food Engineering, 89(3), 336–342.  https://doi.org/10.1016/j.jfoodeng.2008.05.014.CrossRefGoogle Scholar
  30. Özcan, M. M., Al-Juhaimi, F., Ghafoor, K., Babiker, E. E., & Uslu, N. (2015). Effect of heating process on oil yield and fatty acid composition of wheat germ. Quality Assurance and Safety of Crops & Foods, 7(4), 517–520.  https://doi.org/10.3920/QAS2014.0457.CrossRefGoogle Scholar
  31. Rahman, M. S., & Labuza, T. P. (2007). Water activity and food preservation. In M. S. Rahman (Ed.), Handbook of Food Preservation (Second. ed., p. 1088). New York, NY: Taylor & Francis Group.Google Scholar
  32. Rothe, M. (1963). Uber ein neues Stabilisierungsverfahren fur Weizenkeime. Molecular Nutrition & Food Research, 7(8), 579–587.  https://doi.org/10.1002/food.19630070805.Google Scholar
  33. Sakin-Yilmazer, M., Kemerli, T., Isleroglu, H., Ozdestan, O., Guven, G., Uren, A., & Kaymak-Ertekin, F. (2013). Baking kinetics of muffins in convection and steam assisted hybrid ovens (baking kinetics of muffin…). Journal of Food Engineering, 119(3), 483–489.  https://doi.org/10.1016/j.jfoodeng.2013.06.019.CrossRefGoogle Scholar
  34. Sjövall, O., Virtalaine, T., Lapveteläinen, A., & Kallio, H. (2000). Development of rancidity in wheat germ analyzed by headspace gas chromatography and sensory analysis. Journal of Agricultural and Food Chemistry, 48(8), 3522–3527.  https://doi.org/10.1021/jf981309t.CrossRefGoogle Scholar
  35. Srivastava, A. K., Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Studies on heat stabilized wheat germ and its influence on rheological characteristics of dough. European Food Research and Technology, 224(3), 365–372.  https://doi.org/10.1007/s00217-006-0317-x.CrossRefGoogle Scholar
  36. Torrez Irigoyen, R. M., & Giner, S. A. (2011). Fluidisation velocities during processing of whole soybean snack. Journal of Food Engineering, 107(1), 90–98.  https://doi.org/10.1016/j.jfoodeng.2011.05.040.CrossRefGoogle Scholar
  37. Tuncel, N. B. B., Yılmaz, N., Kocabiyik, H., Uygur, A. A., Kocabıyık, H., Yilmaz, N., et al. (2014). The effect of infrared stabilized rice bran substitution on B vitamins, minerals and phytic acid content of pan breads: part II. Journal of Cereal Science, 59(2), 162–166. doi: https://doi.org/10.1016/j.jcs.2013.12.005
  38. Ureta, M. M., Olivera, D. F., & Salvadori, V. O. (2014). Baking of muffins: kinetics of crust color development and optimal baking time. Food and Bioprocess Technology, 7(11), 3208–3216. doi: https://doi.org/10.1007/s11947-014-1292-z
  39. Vetrimani, R., Jyothirmayi, N., Haridas Rao, P., & Ramadoss, C. S. (1992). Inactivation of lipase and lipoxygenase in cereal bran, germ and soybean by microwave treatment. Lebensmittel-Wissenschaft und-Technologie, 25(10), 532–535.Google Scholar
  40. Xu, B., Wang, L. K., Miao, W. J., Wu, Q. F., Liu, Y. X., Sun, Y., & Gao, C. (2016). Thermal versus microwave inactivation kinetics of lipase and lipoxygenase from wheat germ. Journal of Food Process Engineering, 39(3), 247–255.  https://doi.org/10.1111/jfpe.12216.CrossRefGoogle Scholar
  41. Yöndem-Makascioǧlu, F., Gürün, B., Dik, T., & Kincal, N. S. (2005). Use of a spouted bed to improve the storage stability of wheat germ followed in paper and polyethlyene packages. Journal of the Science of Food and Agriculture, 85(8), 1329–1336.  https://doi.org/10.1002/jsfa.2102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC)CONICET-UNCCórdobaArgentina
  2. 2.Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y NaturalesFCEFyN-UNC. Instituto de Ciencia y Tecnología de los Alimentos (ICTA)CórdobaArgentina
  3. 3.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)CONICET-UNLPLa PlataArgentina

Personalised recommendations