Skip to main content
Log in

Impact of Heat Moisture Treatment and Hydration Level of Flours on the Functional and Nutritional Value-Added Wheat-Barley Blended Breads

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The impact of heat moisture treatment (HMT) of flours on the techno-functional and nutritional patterns of binary flour bread matrices (wheat/barley, WT/CB, 60:40, w/w) was investigated in untreated (−) and HMT (+) samples made at 160 and 170 dough yield (DY) levels. Assessment was performed by determining viscoelastic (stress relaxation test) and mechanical (double compression test) behaviours, volume (seed displacement), colour (Photoshop system), crumb grain (digital image analysis), starch digestibility (enzyme hydrolysis) and staling kinetics (Avrami equation), bioaccessible polyphenol content (digestive enzymatic mild extraction) and anti-radical activity (DPPH●). A superior functional profile was provided by HMT of CB flour in the blend WT−CB+ when hydrated at DY 170 compared to the untreated control WT−CB−. The sample exhibited a similar specific volume, more cohesive, springier, more resilient crumb, with similar rate and extent of crumb firming on ageing, and similar colour pattern but finer and more uniformly sized cell structure, and deserved similar sensory ratings as the control WT−CB− concerning cell uniformity, smoothness and typical smell and taste. Digestible starch kinetic curves of blended breads pointed out samples WT−CB+ and WT+CB+ as matrices expliciting a lower degree and slower rate of starch hydrolysis when mixed at low and high DY, respectively. A similar anti-radical activity for composite bread matrices was evidenced regardless of either HMT or DY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AACC (Ed.). (2005). Approved methods of the American Association of Cereal Chemists (10th ed.). AACC St. Paul, MN: The Association.

    Google Scholar 

  • Angioloni, A. & and Collar, C. (2011b). Physicochemical and nutritional properties of reduced-caloric density high-fibre breads. LWT - Food Science and Technology, 44, 747–758, 3, DOI: https://doi.org/10.1016/j.lwt.2010.09.008.

  • Angioloni, A., & Collar, C. (2011a). Polyphenol composition and “in vitro” antiradical activity of single and multigrain breads. Journal of Cereal Science, 53(1), 90–96. https://doi.org/10.1016/j.jcs.2010.10.002

    Article  CAS  Google Scholar 

  • Angioloni, A., & Collar, C. (2009). Bread crumb quality assessment: a plural physical approach. European Food Research and Technology, 229(1), 21–30. https://doi.org/10.1007/s00217-009-1022-3

    Article  CAS  Google Scholar 

  • AOAC. (1991). Total, soluble, and insoluble dietary fiber in foods. Association of Official Analytical Chemists.

  • AOAC. (2000). Official Methods of Analysis 17th Ed., AOAC International.

  • Armero, E., & Collar, C. (1998). Crumb firming kinetics of wheat breads with antistaling additives. Journal of Cereal Science, 28(2), 165–174. https://doi.org/10.1006/jcrs.1998.0190

    Article  CAS  Google Scholar 

  • Bauer, L. L., Murphy, M. R., Wolf, B. W., & Fahey, G. C. (2003). Estimates of starch digestion in the rat small intestine differ from those obtained using in vitro time-sensitive starch fractionation assays. Journal of Nutrition, 133(7), 2256–2261. https://doi.org/10.1093/jn/133.7.2256

    Article  CAS  Google Scholar 

  • Cetiner, B., Acar, O., Kahraman, K., Sanal, T., & Koksel, H. (2017). An investigation on the effect of heat-moisture treatment on baking quality of wheat by using response surface methodology. Journal of Cereal Science, 74(2017), 103–111. https://doi.org/10.1016/j.jcs.2017.01.002

    Article  CAS  Google Scholar 

  • Chen, X., He, X., Fu, X., & Huang, Q. (2015). In vitro digestion and physicochemical properties of wheat starch/flour modified by heat-moisture treatment. Journal of Cereal Science, 63, 109–115. https://doi.org/10.1016/j.jcs.2015.03.003

    Article  CAS  Google Scholar 

  • Chung, H. J., Liu, Q., Pauls, P. K., Fan, M. Z., & Yada, R. (2008). In vitro starch digestibility, expected glycaemic index and some physicochemical properties of starch and flour from common bean. (Phaseolus vulgaris L.) varieties grown in Canada. Food Research International, 41(9), 869–875. https://doi.org/10.1016/j.foodres.2008.03.013

    Article  CAS  Google Scholar 

  • Collar, C. (2017). Significance of heat moisture treatment conditions on the pasting and gelling behaviour of various starch-rich cereal and pseudocereal flours. Food Science and Technology International, 23(7), 623–636. https://doi.org/10.1177/1082013217714671

    Article  CAS  Google Scholar 

  • Collar, C., & Angioloni, A. (2014). Nutritional and functional performance of barley flours in breadmaking: mixed breads vs wheat breads. European Food Research and Technology, 238(3), 459–469. https://doi.org/10.1007/s00217-013-2128-1

    Article  CAS  Google Scholar 

  • Collar, C., & Armero, E. (2017). Impact of heat moisture treatment and hydration level on physico-chemical and viscoelastic properties of doughs from wheat-barley composite flours. European Food Research and Technology, 244(2), 355–366. https://doi.org/10.1007/s00217-017-2961-8

    Article  Google Scholar 

  • Collar, C., Bollaín, C., & Angioloni, A. (2005). Significance of microbial transglutaminase on the sensory, mechanical and crumb grain pattern of enzyme supplemented fresh pan breads. Journal of Food Engineering, 70(4), 479–488. https://doi.org/10.1016/j.jfoodeng.2004.10.047

    Article  Google Scholar 

  • Collar, C., Jiménez, T., Conte, P., & Fadda, C. (2014). Impact of ancient cereals, pseudocereals and legumes on starch hydrolysis and antiradical activity of technologically viable blended breads. Carbohydrate Polymers, 113, 149–158. https://doi.org/10.1016/j.carbpol.2014.07.020

    Article  CAS  Google Scholar 

  • Dupuis, J. H., Liu, Q., & Yada, R. Y. (2014). Methodologies for increasing the resistant starch content of food starches: a review. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1219–1234. https://doi.org/10.1111/1541-4337.12104

    Article  CAS  Google Scholar 

  • FAO/WHO. (2003). Food energy-methods of analysis and conversion factors (p. 77). Rome: FAO Food and Nutrition Paper.

    Google Scholar 

  • Flander, L., Suortti, T., Katina, K., & Poutanen, K. (2011). Effects of wheat sourdough process on the quality of mixed oat-wheat bread. LWT Food Science and Technology, 44(3), 656–664. https://doi.org/10.1016/j.lwt.2010.11.007

    Article  CAS  Google Scholar 

  • Foster-Powell, K., Holt, S. H., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values. American Journal of Clinical Nutrition, 76(1), 5–56.

    Article  CAS  Google Scholar 

  • Gao, L., Wang, S., Oomah, B. D., & Mazza, G. (2002). Wheat quality: antioxidant activity of wheat millstreams. In P. Ng & C. W. Wrigley (Eds.), Wheat quality elucidation (pp. 219–233). St. Paul, MN: AACC International.

    Google Scholar 

  • Gélinas, P., McKinnon, C. M., Rodrigue, N., & Montpetit, D. (2001). Heating conditions and bread-making potential of substandard flour. Journal of Food Science, 66(4), 627–632. https://doi.org/10.1111/j.1365-2621.2001.tb04612.x

    Article  Google Scholar 

  • Glahn, R. P., Lee, O. A., Yeung, A., Goldman, M. I., & Miller, D. D. (1998). Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. The Journal of Nutrition, 128(9), 1555–1561.

    Article  CAS  Google Scholar 

  • Granfeldt, Y., Björck, I., Drews, A., & Tovar, J. (1992). An in vitro procedure based on chewing to predict metabolic responses to starch in cereal and legume products. European Journal of Clinical Nutrition, 46, 649–660.

    CAS  Google Scholar 

  • Gunaratne, A., & Hoover, R. (2002). Effect of heat-moisture on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers, 49(4), 425–437. https://doi.org/10.1016/S0144-8617(01)00354-X

    Article  CAS  Google Scholar 

  • Hartzfeld, P. W., Forkner, R., Hunter, M. D., Sd, M., & Hagerman, A. E. (2002). Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. Journal of Agricultural and Food Chemistry, 50(7), 1785–1790. https://doi.org/10.1021/jf0111155

    Article  CAS  Google Scholar 

  • ICC. (2014). ICC Standard Methods of the International Association for Cereal Science and Technology 104/1, 105/2, 110/1, 115/1, 136, 162, 166. Vienna: The Association.

    Google Scholar 

  • Jenkins, D. J. A., Kendall, C. W. C., Augustin, L. S. A., Franceschi, S., Hamidi, M., Marchie, A., et al. (2002). Glycemic index: overview of implications in health and disease. American Journal of Clinical Nutrition, 76(1), 266S–273S.

    Article  CAS  Google Scholar 

  • Lehmann, U., & Robin, F. (2007). Slowly digestible starch—its structure and health implications: a review. Trends in Food Science & Technology, 18(7), 346–355. https://doi.org/10.1016/j.tifs.2007.02.009

    Article  CAS  Google Scholar 

  • Mann, J., Schiedt, B., Baumann, A., Conde-Petit, B., & Vilgis, T. A. (2013). Effect of heat treatment on wheat dough rheology and wheat protein solubility. Food Science and Technology International, 20, 341–351.

    Article  Google Scholar 

  • Marston, K., Khouryieh, H., & Aramouni, F. (2016). Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT-Food Science and Technology, 65, 637–644. https://doi.org/10.1016/j.lwt.2015.08.063

    Article  CAS  Google Scholar 

  • Niba, L. L. (2003). Processing effects on susceptibility of starch to digestion in some dietary starch sources. International Journal of Food Science and Nutrition, 54(1), 97–109. https://doi.org/10.1080/0963748031000042038

    Article  CAS  Google Scholar 

  • Ovando-Martínez, M., Whitney, K., Reuhs, B. L., Doehlert, D. C., & Simsek, S. (2013). Effect of hydrothermal treatment on physicochemical and digestibility properties of oat starch. Food Research International, 52(1), 17–25. https://doi.org/10.1016/j.foodres.2013.02.035

    Article  Google Scholar 

  • Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to mea-sure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76, 270–276.

  • Saura-Calixto, F., García-Alonso, A., Goñii, I., & Bravo, L. (2000). In vitro determination of the indigestible fraction in foods: An alternative to dietary fiber analysis. Journal of Agricultural and Food Chemistry, 48, 3342–3347.

  • Setser, C. S. (1996). Sensory methods. In R. E. Hebeda & H. F. Zobel (Eds.), Baked goods freshness (pp. 171–187). New York: Marcel Decker Inc.

    Google Scholar 

  • Singh, J., Dartois, A., Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science & Technology, 21, 168–180.

  • Sullivan, P., Arendt, E., & Gallagher, E. (2013). The increasing use of barley and barley by-products in the production of healthier baked goods. Trends in Food Science & Technology, 29(2), 124–134. https://doi.org/10.1016/j.tifs.2012.10.005

    Article  CAS  Google Scholar 

  • Verdú, S., Vásquez, F., Ivorra, E., Sánchez, A. J., Barat, J. M., & Grau, R. (2017). Hyperspectral image control of the heat-treatment process of oat flour to model composite bread properties. Journal of Food Engineering, 192, 45–52. https://doi.org/10.1016/j.jfoodeng.2016.07.017

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the institutions Ministerio de Economía y Competitividad (MINECO) and Federación Europea de Desarrollo Regional (FEDER) for funding the Project AGL2015-63849-C2-1-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concha Collar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collar, C., Armero, E. Impact of Heat Moisture Treatment and Hydration Level of Flours on the Functional and Nutritional Value-Added Wheat-Barley Blended Breads. Food Bioprocess Technol 11, 966–978 (2018). https://doi.org/10.1007/s11947-018-2067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2067-8

Keywords

Navigation