Synergistic Bathochromic and Hyperchromic Shifts of Anthocyanin Spectra Observed Following Complexation with Iron Salts and Chondroitin Sulfate

  • Giovana B. Celli
  • Michael J. Selig
  • Chen Tan
  • Alireza Abbaspourrad
Original Paper
  • 34 Downloads

Abstract

Grape anthocyanins are not traditionally used on complexation studies, as the main compounds lack a catechol group. In this study, concomitant metal complexation (Fe2+ and/or Fe3+) and co-pigmentation with chondroitin sulfate (CHS) were shown to synergistically affect the color spectra of grape anthocyanins at varying pHs. In general, the addition of iron salts resulted in small reductions in maximum absorbance at pH 3 and a bathochromic shift at pH 4 and 5. On the other hand, CHS resulted in hypochromic shifts at pH 3 and 4. When combined, these compounds broadened the peak at higher wavelengths associated with blue color, and resulted in significantly higher (p < 0.05) area under the curve at these wavelengths even at pH 3. Interestingly, this synergistic effect seemed to work only at low pH. All observed effects were achieved using low concentrations of metals and CHS. The results should interest those aiming to achieve anthocyanin color modulation through metal complexation at modest loadings.

Keywords

Anthocyanin Co-pigmentation Chondroitin sulfate Iron Spectra analysis 

Notes

Acknowledgements

This work has been fully supported by resources within the Department of Food Science at Cornell University.

Supplementary material

11947_2018_2055_MOESM1_ESM.jpg (198 kb)
Supplementary Fig. 1 UV-Vis spectra (350–800 nm) of anthocyanin-rich grape powder (control) and low or high concentration of metal salts (exhibits A and B, respectively) or CHS (exhibits C and D, respectively) in 0.5 M sodium acetate buffered solutions (pH 3 to 5, t = 6 h) (JPEG 197 kb)
11947_2018_2055_MOESM2_ESM.jpg (136 kb)
(JPEG 135 kb)
11947_2018_2055_MOESM3_ESM.jpg (131 kb)
(JPEG 130 kb)
11947_2018_2055_MOESM4_ESM.jpg (319 kb)
Supplementary Fig. 2 Anthocyanin-metal-CHS spectra in comparison to control and metal alone at the respective pH values (arrows indicate peak broadening). Insets represent difference absorption spectra (∆A) (in color) (JPEG 318 kb)

References

  1. Abbaspour, N., Hurrell, R., & Roya Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences, 19, 164–174.Google Scholar
  2. Amchova, P., Kotolova, H., & Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73(3), 914–922.  https://doi.org/10.1016/j.yrtph.2015.09.026.CrossRefGoogle Scholar
  3. Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and detrendingof near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43, 772–777.Google Scholar
  4. Bayer, E., Egeter, H., Fink, A., Nether, K., & Wegmann, K. (1966). Complex formation and flower colors. Angewandte Chemie International Edition, 5(9), 791–797.  https://doi.org/10.1002/anie.196607911.CrossRefGoogle Scholar
  5. Brouillard, R., & Dubois, J.-E. (1977). Mechanisms of the structural transformations of anthocyanins in acidic media. Journal of the American Chemical Society, 99(5), 1359–1364.  https://doi.org/10.1021/ja00447a012.CrossRefGoogle Scholar
  6. Buchweitz, M., Brauch, J., Carle, R., & Kammerer, D. R. (2013a). Application of ferric anthocyanin chelates as natural blue food colorants in polysaccharide and gelatin based gels. Food Research International, 51(1), 274–282.  https://doi.org/10.1016/j.foodres.2012.11.030.CrossRefGoogle Scholar
  7. Buchweitz, M., Brauch, J., Carle, R., & Kammerer, D. R. (2013b). Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems. Food Chemistry, 138(2-3), 2026–2035.  https://doi.org/10.1016/j.foodchem.2012.10.090.CrossRefGoogle Scholar
  8. Buchweitz, M., Carle, R., & Kammerer, D. R. (2012b). Bathochromic and stabilising effects of sugar beet pectin and an isolated pectic fraction on anthocyanins exhibiting pyrogallol and catechol moieties. Food Chemistry, 135(4), 3010–3019.  https://doi.org/10.1016/j.foodchem.2012.06.101.CrossRefGoogle Scholar
  9. Buchweitz, M., Nagel, A., Carle, R., & Kammerer, D. R. (2012a). Characterisation of sugar beet pectin fractions providing enhanced stability of anthocyanin-based natural blue food colourants. Food Chemistry, 132(4), 1971–1979.  https://doi.org/10.1016/j.foodchem.2011.12.034.CrossRefGoogle Scholar
  10. Bueno, J. M., Sáez-Plaza, P., Ramos-Escudero, F., Jiménez, A. M., Fett, R., & Asuero, A. G. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry, 42(2), 126–151.  https://doi.org/10.1080/10408347.2011.632314.CrossRefGoogle Scholar
  11. Cabassi, F., Casu, B., & Perlin, A. S. (1978). Infrared absorption and raman scattering of sulfate groups of heparin and related glycosaminoglycans in aqueous solution. Carbohydrate Research, 63, 1–11.  https://doi.org/10.1016/S0008-6215(00)80924-6.CrossRefGoogle Scholar
  12. Chandran, P. L., & Horkay, F. (2012). Aggrecan, an unusual polyelectrolyte: review of solution behavior and physiological implications. Acta Biomaterialia, 8(1), 3–12.  https://doi.org/10.1016/j.actbio.2011.08.011.CrossRefGoogle Scholar
  13. Cortez, R., Luna-Vital, D. A., Margulis, D., & de Mejia, E. G. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180–198.  https://doi.org/10.1111/1541-4337.12244.CrossRefGoogle Scholar
  14. Fedenko, V. S., Shemet, S. A., & Landi, M. (2017). UV–vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: an overview of in vitro and in vivo techniques. Journal of Plant Physiology, 212, 13–28.  https://doi.org/10.1016/j.jplph.2017.02.001.CrossRefGoogle Scholar
  15. Fernandes, A., Brás, N. F., Mateus, N., & de Freitas, V. (2014). Understanding the molecular mechanism of anthocyanin binding to pectin. Langmuir, 30(28), 8516–8527.  https://doi.org/10.1021/la501879w.CrossRefGoogle Scholar
  16. Foot, M., & Mulholland, M. (2005). Classification of chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride and glucosamine 6 sulfate using chemometric techniques. Journal of Pharmaceutical and Biomedical Analysis, 38(3), 397–407.  https://doi.org/10.1016/j.jpba.2005.01.026.CrossRefGoogle Scholar
  17. Garber Jr., L. L., Hyatt, E. M., & Starr Jr., R. G. (2000). The effects of food color on perceived flavor. Journal of Marketing Theory and Practice, 8(4), 59–72.  https://doi.org/10.1080/10696679.2000.11501880.CrossRefGoogle Scholar
  18. Garnjanagoonchorn, W., Wongekalak, L., & Engkagul, A. (2007). Determination of chondroitin sulfate from different sources of cartilage. Chemical Engineering and Processing: Process Intensification, 46(5), 465–471.  https://doi.org/10.1016/j.cep.2006.05.019.CrossRefGoogle Scholar
  19. Giusti, M., & Wrolstad, R. E. (2001). Anthocyanins. Characterization and measurement with UV–visible spectroscopy. In R. E. Wrolstad (Ed.), Current Protocols in Food Analytical Chemistry (pp. 1–13). New York: Wiley.  https://doi.org/10.1002/0471142913.faf0102s00.Google Scholar
  20. Jeong, D., & Na, K. (2012). Chondroitin sulfate based nanocomplex for enhancing the stability and activity of anthocyanin. Carbohydrate Polymers, 90(1), 507–515.  https://doi.org/10.1016/j.carbpol.2012.05.072.CrossRefGoogle Scholar
  21. Jerosch, J. (2011). Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially omega-3 fatty acids. International Journal of Rheumatology, 2011, 969012.CrossRefGoogle Scholar
  22. Manns, D. C., Siricururatana, P., Padilla-Zakour, O. I., & Sacks, G. L. (2015). Decreasing pH results in a reduction of anthocyanin coprecipitation during cold stabilization of purple grape juice. Molecules, 20(1), 556–572.  https://doi.org/10.3390/molecules20010556.CrossRefGoogle Scholar
  23. Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. F. R. (2016). Food colorants: challenges, opportunities and current desires of agroindustries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1–15.  https://doi.org/10.1016/j.tifs.2016.03.009.CrossRefGoogle Scholar
  24. Myers, G. D., Jelavich, M. C., Otto, L. H., Plodzien, J. R. & Inventors; Sensient Colors Inc., assignee (2011). Natural blue-shade colorants and methods of making and using same. U.S. Patent 20110129584 A1. Jun 2, 2011.Google Scholar
  25. Nave, F., Petrov, V., Pina, F., Teixeira, N., Mateus, N., & de Freitas, V. (2010). Thermodynamic and kinetic properties of a red wine pigment: catechin-(4,8)-malvidin-3-o-glucoside. Journal of Physical Chemistry B, 114(42), 13487–13496.  https://doi.org/10.1021/jp104749f.CrossRefGoogle Scholar
  26. Norman, M., Bartczak, P., Zdarta, J., Ehrlich, H., & Jesionowski, T. (2016). Anthocyanin dye conjugated with Hippospongia communis marine demosponge skeleton and its antiradical activity. Dyes and Pigments, 134, 541–552.  https://doi.org/10.1016/j.dyepig.2016.08.019.CrossRefGoogle Scholar
  27. Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776–1782.  https://doi.org/10.1007/s12161-014-9814-x.CrossRefGoogle Scholar
  28. Pervin, M., Hasnat, M. A., Lee, Y. M., Kim, D. H., Jo, J. E., & Lim, B. O. (2014). Antioxidant activity and acetylcholinesterase inhibition of grape skin anthocyanin (GSA). Molecules, 19(7), 9403–9418.  https://doi.org/10.3390/molecules19079403.CrossRefGoogle Scholar
  29. Sigurdson, G. T., & Giusti, M. M. (2014). Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development. Journal of Agricultural and Food Chemistry, 62(29), 6955–6965.  https://doi.org/10.1021/jf405145r.CrossRefGoogle Scholar
  30. Sigurdson, G. T., Robbins, R. J., Collins, T. M., & Giusti, M. M. (2016). Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH. Food Chemistry, 208, 26–34.  https://doi.org/10.1016/j.foodchem.2016.03.109.CrossRefGoogle Scholar
  31. Sui, X., Dong, X., & Zhou, W. (2014). Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chemistry, 163, 163–170.  https://doi.org/10.1016/j.foodchem.2014.04.075.CrossRefGoogle Scholar
  32. Tachibana, N., Kimura, Y., & Ohno, T. (2014). Examination of molecular mechanism for the enhanced thermal stability of anthocyanins by metal cations and polysaccharides. Food Chemistry, 143, 452–458.  https://doi.org/10.1016/j.foodchem.2013.08.017.CrossRefGoogle Scholar
  33. Tan, C., Selig, M. S., & Abbaspourrad, A. (2018). Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. Carbohydrate Polymers, 181, 124–131.  https://doi.org/10.1016/j.carbpol.2017.10.034.CrossRefGoogle Scholar
  34. Teixeira-Neto, Â. A., Shiguihara, S. L., Izumi, C. M. S., Bizeto, M. A., Leroux, F., Temperini, M. L. A., & Constantino, V. R. L. (2009). A hybrid material assembled by anthocyanins from açaí fruit intercalated between niobium lamellar oxide. Dalton Transactions, 0, 4136–4145.CrossRefGoogle Scholar
  35. Trouillas, P., Sancho-García, J. C., de Freitas, V., Gierschner, J., Otyepka, M., & Dangles, O. (2016). Stabilizing and modulating color by copigmentation: insights from theory and experiment. Chemical Reviews, 116(9), 4937–4982.  https://doi.org/10.1021/acs.chemrev.5b00507.CrossRefGoogle Scholar
  36. Uchisawa, H., Okuzaki, B., Ichita, J., & Matsue, H. (2001). Binding between calcium ions and chondroitin sulfate chains of salmon nasal cartilage glycosaminoglycan. International Congress Series, 1223, 205–220.  https://doi.org/10.1016/S0531-5131(01)00458-7.CrossRefGoogle Scholar
  37. Wigand, M. C., Dangles, O., & Brouillard, R. (1992). Complexation of a fluorescent anthocyanin with purines and polyphenols. Phytochemistry, 31(12), 4317–4324.  https://doi.org/10.1016/0031-9422(92)80466-R.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giovana B. Celli
    • 1
  • Michael J. Selig
    • 1
  • Chen Tan
    • 1
  • Alireza Abbaspourrad
    • 1
  1. 1.Department of Food ScienceCornell UniversityIthacaUSA

Personalised recommendations