Food and Bioprocess Technology

, Volume 11, Issue 5, pp 1087–1095 | Cite as

Cellulose Acetate Nanofibres Containing Alizarin as a Halochromic Sensor for the Qualitative Assessment of Rainbow Trout Fish Spoilage

  • Zahra Aghaei
  • Bahareh Emadzadeh
  • Behrouz Ghorani
  • Rassoul Kadkhodaee
Original Paper
  • 49 Downloads

Abstract

A halochromic sensor of cellulose acetate nanofibres and alizarin as a fish spoilage indicator in real time is described. The colour of this on-packaging sensor changes visually with an increase in the amount of total volatile basic nitrogen (TVB-N) and a rise in the pH value of product. Rainbow trout fillets were kept at refrigerator temperature (4 °C) for 12 days. TVB-N, pH, total viable count (TVC) and colourimetric tests were performed. Results showed that the pH, the TVB-N and the TVC increased with time. No colour changes were observed within 48 h, but after the fourth day, a very light brick colour on the nanosensor was observed. This colour became darker on the sixth day, representing actual pH changes. The colour of sensor tended towards violet on the 12th day; the colourimetric result proved the expected visual colour change in the electrospun nanosensor due to alizarin usage as a halochromic dye.

Keywords

Halochromic indicator Intelligent packaging Nanofibres Alizarin Fish spoilage 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Islamic Educational, Scientific and Cultural Organization (ISESCO) for the project entitled “Developing a novel pH-responsive electrospun nanosensor for monitoring the fish spoilage”.

References

  1. Agarwal, A., Raheja, A., Natarajan, T. S., & Chandra, T. S. (2012). Development of universal pH sensing electrospun nanofibers. Sensors and Actuators B: Chemical, 161(1), 1097–1101.  https://doi.org/10.1016/j.snb.2011.12.027.CrossRefGoogle Scholar
  2. AOAC. (1990). Methods of analysis (15th ed.). Washington DC: Association of Official Analytical Chemists.Google Scholar
  3. Arashisar, S., Hisar, O., Kaya, M., & Yanik, T. (2004). Effects of modified atmosphere and vacuum packaging on microbiological and chemical properties of rainbow trout (Oncorynchus mykiss) fillets. International Journal of Food Microbiology, 97(2), 209–214.  https://doi.org/10.1016/j.ijfoodmicro.2004.05.024.CrossRefGoogle Scholar
  4. Balamatsia, C. C., Patsias, A., Kontominas, M. G., & Savvaidis, I. N. (2007). Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets: correlation with microbiological and sensory attributes. Food Chemistry, 104(4), 1622–1628.  https://doi.org/10.1016/j.foodchem.2007.03.013.CrossRefGoogle Scholar
  5. Brody, A. L., Strupinsky, E. R., & Kline, L. R. (2001). In active packaging for food applications (pp. 1-8). Boca Raton: CRC Press.Google Scholar
  6. Chytiri, S., Chouliara, I., Savvaidis, I. N., & Kontominas, M. G. (2004). Microbiological, chemical and sensory assessment of iced whole and filleted aquacultured rainbow trout. Food Microbiology, 21(2), 157–165.  https://doi.org/10.1016/S0740-0020(03)00059-5.CrossRefGoogle Scholar
  7. Dabirian, F., Hosseini, Y., & Ravandi, S. A. H. (2007). Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn. Journal of The Textile Institute, 98(3), 237–241.  https://doi.org/10.1080/00405000701463979.CrossRefGoogle Scholar
  8. Devarayan, K., & Kim, B.-S. (2015). Reversible and universal pH sensing cellulose nanofibers for health monitor. Sensors and Actuators B: Chemical, 209, 281–286.  https://doi.org/10.1016/j.snb.2014.11.120.CrossRefGoogle Scholar
  9. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2), 151–160.  https://doi.org/10.1016/0304-3886(95)00041-8.CrossRefGoogle Scholar
  10. Fabech, B. (2000). Active and intelligent food packaging: a Nordic report on the legislative aspects. København: Nordic Council of Ministers.Google Scholar
  11. Ghaly, A. E., Dave, D., Budge, S., & Brooks, M. (2010). Fish spoilage mechanisms and preservation techniques: review. American Journal of Applied Sciences, 7(7), 859–877.  https://doi.org/10.3844/ajassp.2010.859.877.CrossRefGoogle Scholar
  12. Ghorani, B., Russell, S. J., & Goswami, P. (2013). Controlled morphology and mechanical characterisation of electrospun cellulose acetate fibre webs. International Journal of Polymer Science, 2013, 12–12.  https://doi.org/10.1155/2013/256161.CrossRefGoogle Scholar
  13. Ghorani, B., & Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 51, 227–240.  https://doi.org/10.1016/j.foodhyd.2015.05.024.CrossRefGoogle Scholar
  14. Giménez, B., Roncalés, P., & Beltrán, J. A. (2002). Modified atmosphere packaging of filleted rainbow trout. Journal of the Science of Food and Agriculture, 82(10), 1154–1159.  https://doi.org/10.1002/jsfa.1136.CrossRefGoogle Scholar
  15. Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie (International Ed. in English), 46(30), 5670–5703.  https://doi.org/10.1002/anie.200604646.CrossRefGoogle Scholar
  16. ISIRI (2000). Fish and shrimp, microbial properties. Institute of Standards and Industrial Research of Iran (2394–1), 1–12.Google Scholar
  17. Jouki, M., Yazdi, F. T., Mortazavi, S. A., Koocheki, A., & Khazaei, N. (2014). Effect of quince seed mucilage edible films incorporated with oregano or thyme essential oil on shelf life extension of refrigerated rainbow trout fillets. Int J Food Microbiol, 174(Supplement C), 88–97.  https://doi.org/10.1016/j.ijfoodmicro.2014.01.001.CrossRefGoogle Scholar
  18. Kalbassi, M. R., Abdollahzadeh, E., & Salari-Joo, H. (2013). A review on aquaculture development in Iran. Ecopersia, 1(2), 159–178.Google Scholar
  19. Kuswandi, B., Jayus, R., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25(1), 184–189.  https://doi.org/10.1016/j.foodcont.2011.10.008.CrossRefGoogle Scholar
  20. Kyrana, V. R., & Lougovois, V. P. (2002). Sensory, chemical and microbiological assessment of farm-raised European sea bass (Dicentrarchus labrax) stored in melting ice. International Journal of Food Science and Technology, 37(3), 319–328.  https://doi.org/10.1046/j.1365-2621.2002.00572.x.CrossRefGoogle Scholar
  21. Kyrana, V. R., Lougovois, V. P., & Valsamis, D. S. (1997). Assessment of shelf-life of maricultured gilthead sea bream (Sparus aurata) stored in ice. International Journal of Food Science and Technology, 32(4), 339–347.  https://doi.org/10.1046/j.1365-2621.1997.00408.x.CrossRefGoogle Scholar
  22. Morsy, M. K., Zór, K., Kostesha, N., Alstrøm, T. S., Heiskanen, A., El-Tanahi, H., Sharoba, A., Papkovsky, D., Larsen, J., Khalaf, H., Jakobsen, M. H., & Emnéus, J. (2016). Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control, 60, 346–352.  https://doi.org/10.1016/j.foodcont.2015.07.038.CrossRefGoogle Scholar
  23. Moteleb, M. M. A. (1992). Electrical conductance of some cellulose derivatives. Polymer Bulletin, 28(6), 689–695.  https://doi.org/10.1007/bf00295974.CrossRefGoogle Scholar
  24. Nopwinyuwong, A., Trevanich, S., & Suppakul, P. (2010). Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta, 81(3), 1126–1132.  https://doi.org/10.1016/j.talanta.2010.02.008.CrossRefGoogle Scholar
  25. Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B., et al. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food Chemistry, 102(2), 466–470.  https://doi.org/10.1016/j.foodchem.2006.05.052.CrossRefGoogle Scholar
  26. Pacquit, A., Lau, K. T., McLaughlin, H., Frisby, J., Quilty, B., & Diamond, D. (2006). Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta, 69(2), 515–520.  https://doi.org/10.1016/j.talanta.2005.10.046.CrossRefGoogle Scholar
  27. Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: a review [journal article]. Food and Bioprocess Technology, 6(1), 36–60.  https://doi.org/10.1007/s11947-012-0867-9.CrossRefGoogle Scholar
  28. Pereira Jr., V. A., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocolloids, 43, 180–188.  https://doi.org/10.1016/j.foodhyd.2014.05.014.CrossRefGoogle Scholar
  29. Pittarate, C., Yoovidhya, T., Srichumpuang, W., Intasanta, N., & Wongsasulak, S. (2011). Effects of poly(ethylene oxide) and ZnO nanoparticles on the morphology, tensile and thermal properties of cellulose acetate nanocomposite fibrous film. Polymer Journal, 43(12), 978–986.  https://doi.org/10.1038/pj.2011.97.CrossRefGoogle Scholar
  30. Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C., & Ma, Z. (2005). An introduction to electrospinning and nanofibers. Singapore: World Scientific.Google Scholar
  31. Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547.  https://doi.org/10.1063/1.373532.CrossRefGoogle Scholar
  32. Rokka, M., Eerola, S., Smolander, M., Alakomi, H.-L., & Ahvenainen, R. (2004). Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions: B. Biogenic amines as quality-indicating metabolites. Food Control, 15(8), 601–607.  https://doi.org/10.1016/j.foodcont.2003.10.002.CrossRefGoogle Scholar
  33. Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T., & Suppakul, P. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130, 547–554.  https://doi.org/10.1016/j.talanta.2014.07.048.CrossRefGoogle Scholar
  34. Shenoy, S. L., Bates, W. D., Frisch, H. L., & Wnek, G. E. (2005). Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer, 46(10), 3372–3384.  https://doi.org/10.1016/j.polymer.2005.03.011.CrossRefGoogle Scholar
  35. Shin, Y. M., Hohman, M. M., Brenner, M. P., & Rutledge, G. C. (2001). Electrospinning: a whipping fluid jet generates submicron polymer fibers. Applied Physics Letters, 78(8), 1149–1151.  https://doi.org/10.1063/1.1345798.CrossRefGoogle Scholar
  36. Silva-Pereira, M. C., Teixeira, J. A., Pereira-Júnior, V. A., & Stefani, R. (2015). Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT- Food Science and Technology, 61(1), 258–262.  https://doi.org/10.1016/j.lwt.2014.11.041.CrossRefGoogle Scholar
  37. Skilbrei, O. T. (2012). The importance of escaped farmed rainbow trout (Oncorhynchus mykiss) as a vector for the salmon louse (Lepeophtheirus salmonis) depends on the hydrological conditions in the fjord [journal article]. Hydrobiologia, 686(1), 287–297.  https://doi.org/10.1007/s10750-012-1028-x.CrossRefGoogle Scholar
  38. Tassanawat, S., Phandee, A., Magaraphan, R., Nithitanakul, M., & Manuspiya, H. (2007) pH-sensitive PP/clay nanocomposites for beverage smart packaging. In 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok (pp. 478–482).Google Scholar
  39. Van der Schueren, L., De Meyer, T., Steyaert, I., Ceylan, O., Hemelsoet, K., Van Speybroeck, V., & de Clerck, K. (2013). Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohydrate Polymers, 91(1), 284–293.  https://doi.org/10.1016/j.carbpol.2012.08.003.CrossRefGoogle Scholar
  40. Van der Schueren, L., Hemelsoet, K., Van Speybroeck, V., & De Clerck, K. (2012). The influence of a polyamide matrix on the halochromic behaviour of the pH-sensitive azo dye Nitrazine Yellow. Dyes and Pigments, 94(3), 443–451.  https://doi.org/10.1016/j.dyepig.2012.02.013.CrossRefGoogle Scholar
  41. Van der Schueren, L., Mollet, T., Ceylan, Ö., & De Clerck, K. (2010). The development of polyamide 6.6 nanofibres with a pH-sensitive function by electrospinning. European Polymer Journal, 46(12), 2229–2239.  https://doi.org/10.1016/j.eurpolymj.2010.09.016.CrossRefGoogle Scholar
  42. Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Bending instability in electrospinning of nanofibers. Journal of Applied Physics, 89(5), 3018–3026.  https://doi.org/10.1063/1.1333035.CrossRefGoogle Scholar
  43. Yoshida, C. M. P., Maciel, V. B. V., Mendonça, M. E. D., & Franco, T. T. (2014). Chitosan biobased and intelligent films: monitoring pH variations. LWT- Food Science and Technology, 55(1), 83–89.  https://doi.org/10.1016/j.lwt.2013.09.015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food NanotechnologyResearch Institute of Food Science & Technology (RIFST)MashhadIran

Personalised recommendations