Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1562–1573 | Cite as

Allyl Isothiocyanate Release from Edible Laminaria japonica for Time-Dependent Growth Deactivation of Foodborne Pathogens: I: Micrococcus luteus, Bacillus subtilis, and Listeria monocytogenes

  • Reham A. El Fayoumy
  • Phillip Pendleton
  • Amira A. El-Fallal
  • Mohamed I. Abou-Dobara
  • Ahmed K. A. El-Sayed
Original Paper


Allyl isothiocyanate (AITC) is a natural occurring essential oil found in plants of the family Brassicaceae. It is a well-recognized antimicrobial agent against a variety of foodborne pathogens. By vapor and solution deposition methods into raw and de-oiled Laminaria japonica, an edible, brown seaweed, we demonstrate AITC vapor phase activity against Listeria monocytogenes, Bacillus subtilis, and Micrococcus luteus. Colony deactivation occurred for each bacterium in the range 99.87–99.99% within 72 h. The kinetics of these activities was fitted to the Weibull and the Albert-Mafart population decay models. Combined standard uncertainty in the final model fitting is introduced for these models, along with bias factor analysis. The former indicates the degree of fit of the models while the latter indicated which of the models was the most appropriate. In general, the bias factor analysis of the models indicated that the Albert-Mafart model was the superior. The continued activity of AITC after contact with the seaweed delivery system suggested that the L. japonica + AITC system would represent a viable natural, edible system for food preservation.


Allyl isothiocyanate Laminaria japonica Antimicrobial activity Gram-positive bacteria Kinetics 



RAEl-F thanks the Egyptian Mission Office for the provision of financial support throughout this work. The authors thank Prof. B.S. Chun (Dept. Food Science and Technology, Pukyong National University, Busan, Korea) for the preparation and supply of de-oiled and raw samples of L. japonica.

Supplementary material

11947_2017_1925_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1251 kb)


  1. AbdEl-Malek, A. M., Hassan Ali, S. F., Moemen, R. H., Mohamed, A., & Elsayh, K. I. (2010). Occurrence of Listeria species in meat, chicken products and human stools in Assiut City, Egypt with PCR use for rapid identification of Listeria monocytogenes. Veterinary World, 3(8), 353–359.Google Scholar
  2. Albert, I., & Mafart, P. (2005). A modified Weibull model for bacterial inactivation. International Journal of Food Microbiology, 100(1–3), 197–211.CrossRefGoogle Scholar
  3. Argyri, A. A., Lyra, E., Panagou, E. Z., & Tassou, C. C. (2013). Fate of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes during storage of fermented green table olives in brine. Food Microbiology, 36(1), 1–6.CrossRefGoogle Scholar
  4. van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 139–159.CrossRefGoogle Scholar
  5. Braun, P., Fehlhaber, K., Klug, C., & Kopp, K. (1999). Investigations into the activity of enzymes produced by spoilage-causing bacteria: a possible basis for improved shelf-life estimation. Food Microbiology, 16(5), 531–540.CrossRefGoogle Scholar
  6. Chan, A. C., Ager, D., & Thompson, I. P. (2013). Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors. Journal of Microbiological Methods, 93(3), 209–217.CrossRefGoogle Scholar
  7. Charpentier, E., Gerbaud, G., Jacquet, C., Rocourt, J., & Courvalin, P. (1995). Incidence of antibiotic resistance in Listeria species. Journal of Infectious Diseases, 172(1), 277–281.CrossRefGoogle Scholar
  8. Close, D., Xu, T., Smartt, A., Rogers, A., Crossley, R., Price, S., Ripp, S., & Sayler, G. (2012). The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors, 12(1), 732.CrossRefGoogle Scholar
  9. Corradini, M.G., & Peleg, M. (2012). The kinetics of microbial inactivation by carbon dioxide under high pressure. In: Balaban MO & Ferrentino G (eds) Dense phase carbon dioxide: applications to food. p^pp 135–155. Blackwell.Google Scholar
  10. Dai, R., & Lim, L. (2014). Release of allyl isothiocyanate from mustard seed meal powder. Journal of Food Science, 79(1), E47–E53.CrossRefGoogle Scholar
  11. Delaquis, P. J., & Sholberg, P. L. (1997). Antimicrobial activity of gaseous allyl isothiocyanate. Journal of Food Protection, 60(8), 943–947.CrossRefGoogle Scholar
  12. Gailunas, K., Matak, K., Boyer, R., Alvarado, C., Williams, R., & Sumner, S. (2008). Research note: use of UV light for the inactivation of Listeria monocytogenes and lactic acid bacteria species in recirculated chill brines. Journal of Food Protection, 71(3), 629–633.CrossRefGoogle Scholar
  13. Han, J.H. (2003). 4 - Antimicrobial food packaging A2 - Ahvenainen, Raija. In: Novel food packaging techniques. p^pp 50–70. Woodhead Publishing.Google Scholar
  14. Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3.Google Scholar
  15. Isshiki, K., Tokuoka, K., Mori, R., & Chiba, S. (1992). Preliminary examination of allyl isothiocyanate vapor for food preservation. Bioscience, Biotechnology, and Biochemistry, 56(9), 1476–1477.CrossRefGoogle Scholar
  16. Kim, W.-T., Chung, H., Shin, I.-S., Yam, K. L., & Chung, D. (2008). Characterization of calcium alginate and chitosan-treated calcium alginate gel beads entrapping allyl isothiocyanate. Carbohydrate Polymers, 71(4), 566–573.CrossRefGoogle Scholar
  17. Koukoutsis, J., Smith, J. P., Daifas, D. P., Yayalan, V., Cayouette, B., Ngadi, M., & El-Khoury, W. (2004). In vitro studies to control the growth of microorganisms of spoilage and safety concern in high-moisture, high-pH bakery products. Journal of Food Safety, 24(3), 211–230.CrossRefGoogle Scholar
  18. Langsrud, S., Sidhu, M. S., Heir, E., & Holck, A. L. (2003). Bacterial disinfectant resistance—a challenge for the food industry. International Biodeterioration & Biodegradation, 51(4), 283–290.CrossRefGoogle Scholar
  19. Lee, H., Zhou, B., Liang, W., Feng, H., & Martin, S. E. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. Journal of Food Engineering, 93(3), 354–364.CrossRefGoogle Scholar
  20. Maier, R.M. (2000). Uninoculated Mueller Hinton broth media used as a blank. In: Bacterial growth: I. Review of basic microbiological concepts. p^pp. Elsevier.Google Scholar
  21. Maresca, P., & Ferrari, G. (2017). Modeling of the microbial inactivation by high hydrostatic pressure freezing. Food Control, 73, Part A, 8–17.CrossRefGoogle Scholar
  22. Ortuño, C., Balaban, M., & Benedito, J. (2014). Modelling of the inactivation kinetics of Escherichia coli, Saccharomyces cerevisiae and pectin methylesterase in orange juice treated with ultrasonic-assisted supercritical carbon dioxide. The Journal of Supercritical Fluids, 90, 18–26.CrossRefGoogle Scholar
  23. Paes, J. L., Faroni, L. R. A., Martins, M. A., Dhingra, O. D., & Silva, T. A. (2011). Diffusion and sorption of allyl isothiocyanate in the process of fumigation of maize. Revista Brasileira de Engenharia Agrícola e Ambiental, 15, 296–301.CrossRefGoogle Scholar
  24. Park, S.-Y., & Pendleton, P. (2012). Mesoporous silica SBA-15 for natural antimicrobial delivery. Powder Technology, 223, 77–82.CrossRefGoogle Scholar
  25. Park, S.-Y., Barton, M., & Pendleton, P. (2012). Controlled release of allyl isothiocyanate for bacteria growth management. Food Control, 23, 478–484.CrossRefGoogle Scholar
  26. Pichler, J., Much, P., Kasper, S., Fretz, R., Auer, B., Kathan, J., Mann, M., Huhulescu, S., Ruppitsch, W., Pietzka, A., Silberbauer, K., Neumann, C., Gschiel, E., de Martin, A., Schuetz, A., Gindl, J., Neugschwandtner, E., & Allerberger, F. (2009). An outbreak of febrile gastroenteritis associated with jellied pork contaminated with Listeria monocytogenes. Wiener klinische Wochenschrift, 121(3–4), 149–156.CrossRefGoogle Scholar
  27. Rosenkvist, H., & Hansen, Å. (1995). Contamination profiles and characterisation of Bacillus species in wheat bread and raw materials for bread production. International Journal of Food Microbiology, 26(3), 353–363.CrossRefGoogle Scholar
  28. Ross, T. (1966). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501–508.Google Scholar
  29. Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81(5), 501–508.CrossRefGoogle Scholar
  30. Sekiyama, Y., Mizukami, Y., Takada, A., Oosono, M., & Nishimura, T. (1996). Effect of mustard extract vapor on fungi and spore-forming bacteria. Journal of Antibacterial and Antifungal Agents, 24(3), 171–178.Google Scholar
  31. Siahaan, E. A., Meillisa, A., Woo, H.-C., Lee, C.-W., Han, J.-H., & Chun, B.-S. (2013). Controlled release of allyl isothiocyanate from brown algae Laminaria japonica and mesoporous silica MCM-41 for inhibiting food-borne bacteria. Food Science and Biotechnology, 22(1), 19–24.CrossRefGoogle Scholar
  32. Siahaan, E. A., Pendleton, P., Woo, H.-C., & Chun, B.-S. (2014). Brown seaweed (Saccharina japonica) as an edible natural delivery matrix for allyl isothiocyanate inhibiting food-borne bacteria. Food Chemistry, 152, 11–17.CrossRefGoogle Scholar
  33. Smith-Palmer, A., Stewart, J., & Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology, 26(2), 118–122.CrossRefGoogle Scholar
  34. Stepanović, S., Ćirković, I., & Ranin, L. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology, 38(5), 428–432.CrossRefGoogle Scholar
  35. Taylor, J. R. (1982). An introduction to error analysis: the study of uncertainties in physical measurements. New York: University Science Books.Google Scholar
  36. Taylor, B.N., & Kuyatt, C.E. (1997). Guidelines for evaluating and expressing the uncertainty of NIST measurement results. In. p^pp 1–120. National Institute of Standards and Technology, US Government, Washington, DC.Google Scholar
  37. Tiwari, B. K., Valdramidis, V. P., O’Donnell, C. P., Muthukumarappan, K., Bourke, P., & Cullen, P. J. (2009). Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, 57(14), 5987–6000.CrossRefGoogle Scholar
  38. Ulate-Rodríguez, J., Schafer, H. W., Zottola, E. A., & Davidson, P. M. (1997). Inhibition of Listeria monocytogenes, Escherichia coli O157:H7, and Micrococcus luteus by linear Furanocoumarins in a model food system. Journal of Food Protection, 60(9), 1050–1054.CrossRefGoogle Scholar
  39. Ward, S. M., Delaquis, P. J., Holley, R. A., & Mazza, G. (1998). Inhibition of spoilage and pathogenic bacteria on agar and pre-cooked roast beef by volatile horseradish distillates. Food Research International, 31(1), 19–26.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Botany and Microbiology Department, Faculty of ScienceDamietta UniversityNew Damietta CityEgypt
  2. 2.School of Chemical EngineeringThe University Of AdelaideAdelaideAustralia

Personalised recommendations