Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1574–1583 | Cite as

Effects of Radio Frequency Heating Treatment on Structure Changes of Soy Protein Isolate for Protein Modification

  • Chaofan Guo
  • Zhenna Zhang
  • Jiajia Chen
  • Hongfei Fu
  • Jeyamkondan Subbiah
  • Xiangwei Chen
  • Yunyang Wang
Original Paper


The effects of radio frequency (RF) heating treatments with different final temperatures (70, 80, and 90 °C) and electrode gaps (120, 160, and 200 mm) on the structural characteristics of soy protein isolate (SPI) dispersion were investigated. The results showed that RF heating significantly influenced free sulfhydryl groups and surface hydrophobicity of SPI. Free sulfhydryl groups increased with the increase of final temperature. The hydrophobicity of the RF-heated sample was higher than the original SPI without RF treatment. The highest hydrophobicity of the RF-heated SPI was found with electrode gap of 200 mm at 90 °C. RF heating treatment resulted in the reduction of ultraviolet absorption of SPI indicating the change of three-dimensional positions of soy protein but did not modify the protein primary structure of SPI. The Fourier transform infrared spectroscopy showed that hydration of SPI was decreased by RF heating. The self-reassembly from random coil structure to β-sheet structure suggested that RF heating treatment can change the secondary structure of soy protein to be more orderly.

Graphical Abstract


Soy protein isolate Radio frequency heating Structure FTIR 



We would like to thank Prof. Zhenyu Li, College of Food Science and Engineering, Northwest A&F University, China, for his helpful advices and assistance with the English language. This study was supported by the general program (Grant Nos. 31371854 and 31171761) of the National Natural Science Foundation of China.


  1. Awuah, G. B., Ramaswamy, H. S., Economides, A., & Mallikarjunan, K. (2006). Inactivation of Escherichia coli K-12 and Listeria innocua in milk using radio frequency (RF) heating. Innovative Food Science & Emerging Technologies., 6(4), 396–402.CrossRefGoogle Scholar
  2. Beveridge, T., Toma, S. J., & Nakai, S. (1974). Determination of SH- and SS-groups in some food proteins using Ellman’s reagent. Journal of Food Science., 39(1), 49–51.CrossRefGoogle Scholar
  3. Bi, W. W., Zhao, W. L., Li, X. D., Ge, W., Muhammad, Z., Wang, H. X., & Du, L. L. (2015). Study on microwave-accelerated casein protein grafted with glucose and β-cyclodextrin to improve the gel properties. International Journal of Food Science and Technology., 50(6), 1429–1435.CrossRefGoogle Scholar
  4. Bradford, M. M. (2015). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(s 1–2), 248–254.Google Scholar
  5. Carbonaro, M., & Nucara, A. (2010). Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids, 38(3), 679–690.CrossRefGoogle Scholar
  6. Geveke, D. J., & Brunkhorst, C. (2008). Radio frequency electric fields inactivation of Escherichia coli in apple cider. Journal of Food Engineering., 85(2), 215–221.CrossRefGoogle Scholar
  7. Goormaghtigh, E., Ruysschaert, J. M., & Raussens, V. (2006). Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophysical Journal, 90(8), 2946–2957.CrossRefGoogle Scholar
  8. Guan, J. J., Zhang, T. B., Hui, M., Yin, H. C., Qiu, A. Y., & Liu, X. Y. (2011). Mechanism of microwave-accelerated soy protein isolate–saccharide graft reactions. Food Research International., 44(9), 2647–2654.CrossRefGoogle Scholar
  9. He, S., Shi, J., Walid, E., Zhang, H. W., Ma, Y., & Xue, S. J. (2015). Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): optimisation of extraction conditions by response surface methodology. Food Chemistry., 166(1), 93–100.CrossRefGoogle Scholar
  10. Hu, H., Wu, J. H., Li-Chan, E. C. Y., Zhu, L., Zhang, F., Xu, X. Y., Fan, G., Wang, L. F., Huang, X. J., & Pan, S. Y. (2013). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2), 647–655.CrossRefGoogle Scholar
  11. Jiang, J., Chen, J., & Xiong, Y. L. (2009). Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. Journal of Agricultural & Food Chemistry., 57(16), 7576–7583.CrossRefGoogle Scholar
  12. Kato, A., & Nakai, S. (1980). Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica Et Biophysica Acta., 624(1), 13–20.CrossRefGoogle Scholar
  13. Keerati-U-Rai, M., Miriani, M., Iametti, S., Bonomi, F., & Corredig, M. (2012). Structural changes of soy proteins at the oil–water interface studied by fluorescence spectroscopy. Colloids & Surfaces B Biointerfaces., 93(1), 41–48.CrossRefGoogle Scholar
  14. Kong, B., Xiong, Y. L., Cui, X., & Zhao, X. (2011). Hydroxyl radical-stressed whey protein isolate: functional and rheological properties. Food & Bioprocess Technology., 6(1), 1–8.Google Scholar
  15. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  16. Laligant, A., Dumay, E., Valencia, C., Cuq, J. L., & Cheftel, J. C. (1991). Surface hydrophobicity and aggregation of β-lactoglobulin heated near neutral pH. Journal of Agricultural & Food Chemistry., 39(12), 2147–2155.CrossRefGoogle Scholar
  17. Lange, R., & Balny, C. (2002). UV-visible derivative spectroscopy under high pressure. Biochimica Et Biophysica Acta., 1595(1–2), 80–93.CrossRefGoogle Scholar
  18. Liu, C. Q., & Ma, X. J. (2016). Study on the mechanism of microwave modified wheat protein fiber to improve its mechanical properties. Journal of Cereal Science., 70, 99–107.CrossRefGoogle Scholar
  19. Lu, Y., Liu, Q., Geng, R., Kong, B. H., Han, J. C., & Lv, H. (2015). The effect of oxidative hydroxyl radical on structural characteristics of soybean protein isolate. Chinese Academy of Sciences., 15(10), 73–79.Google Scholar
  20. Marra, F., Lyng, J. G., Romano, V., & Mckenna, B. (2007). Radio-frequency heating of foodstuff: Solution and validation of a mathematical model. Journal of Food Engineering., 79(3), 998–1006.CrossRefGoogle Scholar
  21. Monsoor, M. A. (2005). Effect of drying methods on the functional properties of soy hull pectin. Carbohydrate Polymers., 61(3), 362–367.CrossRefGoogle Scholar
  22. Nishinari, K., Fang, Y., Guo, S., & Phillips, G. O. (2014). Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocolloids, 39(2), 301–318.CrossRefGoogle Scholar
  23. Petruccelli, S., & Anon, M. C. (1995). Partial reduction of soy protein isolate disulfide bonds. Journal of Agricultural & Food Chemistry., 43(8), 2001–2006.CrossRefGoogle Scholar
  24. Petruccelli, S., & Anon, M. C. (1996). Thermal aggregation of soy protein isolates. Journal of Agricultural & Food Chemistry., 43(12), 3035–3041.CrossRefGoogle Scholar
  25. Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H. S., & Awuah, G. B. (2003). Radio frequency heating of foods: principles, applications and related properties—a review. Critical Reviews in Food Science and Nutrition., 43(6), 587–606.CrossRefGoogle Scholar
  26. Plancken, L. V. D., Loey, A. V., & Hendrickx, M. E. (2007). Foaming properties of egg white proteins affected by heat or high pressure treatment. Journal of Food Engineering., 78(4), 1410–1426.CrossRefGoogle Scholar
  27. Ragone, R., Colonna, G., Balestrieri, C., Servillo, L., & Irace, G. (1984). Determination of tyrosine exposure in proteins by second derivative spectroscopy. Biochemistry, 23(8), 1871–1875.CrossRefGoogle Scholar
  28. Ramírez-Suárez, J. C., & Xiong, Y. L. (2003). Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures. Meat Science., 65(2), 899–907.CrossRefGoogle Scholar
  29. Schmidt, V., Giacomelli, C., & Soldi, V. (2005). Thermal stability of films formed by soy protein isolate–sodium dodecyl sulfate. Polymer Degradation & Stability., 87(1), 25–31.CrossRefGoogle Scholar
  30. Sorgentini, D. A., Wagner, J. R., & Anon, M. C. (1995). Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions. Journal of Agricultural & Food Chemistry., 43(9), 15607–15613.CrossRefGoogle Scholar
  31. Thostenson, E. T., & Chou, T. W. (1999). Microwave processing: fundamentals and applications. Composites Part A Applied Science & Manufacturing., 30(9), 1055–1071.CrossRefGoogle Scholar
  32. Tong, P., Gao, J. Y., Chen, H. B., Li, X., Zhang, Y., Jian, S., Wichers, H., Wu, Z. H., Yang, A. S., & Liu, F. H. (2012). Effect of heat treatment on the potential allergenicity and conformational structure of egg allergen ovotransferrin. Food Chemistry., 131(2), 603–610.CrossRefGoogle Scholar
  33. Uemura, K., Takahashi, C., & Kobayashi, I. (2010). Inactivation of Bacillus subtilis spores in soybean milk by radio-frequency flash heating. Journal of Food Engineering., 100(4), 622–626.CrossRefGoogle Scholar
  34. Uyar, R., Erdogdu, F., Sarghini, F., & Marra, F. (2016). Computer simulation of radio-frequency heating applied to block-shaped foods: analysis on the role of geometrical parameters. Food and Bioproducts Processing., 98, 310–319.CrossRefGoogle Scholar
  35. Voutsinas, L. P., Cheung, E., & Nakai, S. (1983). Relationships of hydrophobicity to emulsifying properties of heat denatured proteins. Journal of Food Science., 48(1), 26–32.CrossRefGoogle Scholar
  36. Wagner, J. R., Sorgentini, D. A., & Anon, M. C. (2000). Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. Journal of Agricultural and Food Chemistry., 48(8), 3159–3156.CrossRefGoogle Scholar
  37. Wang, Z. J., Li, Y., Jiang, L. Z., Qi, B. K., & Zhou, L. Y. (2014). Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of Chemistry, 2014(5), 1–10.Google Scholar
  38. Wei, W., Wu, X. J., & Hua, Y. F. (2010). Structural modification of soy protein by the lipid peroxidation product acrolein. LWT - Food Science and Technology., 43(1), 133–140.CrossRefGoogle Scholar
  39. Yalcin, E., Sakiyan, O., Sumnu, G., Celik, S., & Koksel, H. (2008). Functional properties of microwave-treated wheat gluten. European Food Research and Technology., 227(5), 1411–1417.CrossRefGoogle Scholar
  40. Yang, J., Tang, J. M., Wang, S. J., & Koral, T. (2014). Influence of dielectric properties on the heating rate in free-running oscillator radio frequency systems. Journal of Food Engineering., 120(1), 197–203.Google Scholar
  41. Zhang, H. H., Zhu, K. X., Chen, Y., & Zhou, H. M. (2011). Effect of microwave treatment on structure of wheat gluten protein. Food Science, 32(5), 65–69.Google Scholar
  42. Zhao, J. Y., Dong, F. J., Li, Y. Y., Kong, B. H., & Liu, Q. (2015). Effect of freeze–thaw cycles on the emulsion activity and structural characteristics of soy protein isolate. Process Biochemistry, 50(10), 1607–1613.CrossRefGoogle Scholar
  43. Zhou, H., Wang, C. Z., Ye, J. Z., Chen, H. X., Tao, R., & Cao, F. L. (2016). Effects of high hydrostatic pressure treatment on structural, allergenicity, and functional properties of proteins from ginkgo seeds. Innovative Food Science and Emerging Technologies., 34, 187–195.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Chaofan Guo
    • 1
  • Zhenna Zhang
    • 1
  • Jiajia Chen
    • 2
  • Hongfei Fu
    • 1
  • Jeyamkondan Subbiah
    • 2
    • 3
  • Xiangwei Chen
    • 1
  • Yunyang Wang
    • 1
  1. 1.College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
  2. 2.Department of Food Science and TechnologyUniversity of Nebraska-LincolnLincolnUSA
  3. 3.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations