Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1540–1547 | Cite as

Pulsed Light Effect in Red Grape Quality and Fermentation

  • Carlos Escott
  • Cristian Vaquero
  • Juan Manuel del Fresno
  • Maria Antonia Bañuelos
  • Iris Loira
  • Shun-yu Han
  • Yang Bi
  • Antonio MorataEmail author
  • Jose Antonio Suárez-Lepe
Original Paper


Vitis vinifera (variety Tempranillo) grapes were processed by pulsed light (PL) at several treatment conditions before fermentation. The effect on grape external structure, wild microbial populations, phenol extraction and wine composition was monitored. PL treatments decreased significantly microbial loads in grapes. After treatment, the grapes were inoculated and fermented with Saccharomyces cerevisiae following fermentation during 2 weeks with skins and seeds. Temperature was set at 22 °C. PL treatments control wild microorganisms, especially yeasts, facilitating the growth and development of the yeast starter affecting wine quality. PL treatments of grapes can help to increase the shelf-life in postharvest technology but also improve fermentative purity and wine quality. PL is cheaper and easier to scale-up at winery than high hydrostatic pressure, pulsed electric fields or e-beam irradiation.


Pulsed light Red grape Yeasts Cold pasteurization Winemaking Emerging technologies 



Pulsed light


High hydrostatic pressure


Pulsed electric fields


Treatment with five flashes at medium energy


Treatment with ten flashes at medium energy


Treatment with five flashes at maximum energy


Treatment with ten flashes at maximum energy



This work was funded by the Ministerio de Economía y Competitividad (AGL2013-40503-R). The authors thank J. A. Sánchez and A. Sáez (Dept. Química y Tecnología de Alimentos) and A. Villa (Dept. Biotechnology) for excellent technical assistance. The authors also want to express their gratitude to Manuela Fernández and Eva Hierro from Facultad de Veterinaria at the Universidad Complutense de Madrid, for allowing us to work with them and use their facilities, as well as for all their help and collaboration.


  1. Abalos, D., Vejarano, R., Morata, A., González, C., & Suárez-Lepe, J. A. (2011). The use of furfural as a metabolic inhibitor for reducing the alcohol content of model wines. European Food Research and Technology, 232, 663–669.CrossRefGoogle Scholar
  2. Aguirre, J. S., Hierro, E., Fernández, M., & García de Fernando, G. D. (2014). Modelling the effect of light penetration and matrix colour on the inactivation of Listeria innocua by pulsed light. Innovative Food Science and Emerging Technologies, 26, 505–510.CrossRefGoogle Scholar
  3. Bakker, J., & Timberlake, C. F. (1997). Isolation, identification and characterization of new color-stable anthocyanins occurring in some red wines. Journal of Agricultural and Food Chemistry, 45, 35–43.CrossRefGoogle Scholar
  4. Bañuelos, M. A., Loira, I., Escott, C., Del Fresno, J. M., Morata, A., Sanz, P. D., Otero, L., & Suárez-Lepe, J. A. (2016). Grape processing by high hydrostatic pressure: effect on use of non-Saccharomyces in must fermentation. Food and Bioprocess Technology, 9, 1769–1778.CrossRefGoogle Scholar
  5. Ciani, M., Comitini, F., Mannazzu, I., & Domizio, P. (2010). Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Research, 10, 123–133.CrossRefGoogle Scholar
  6. Claranor. (2017). Pulsed Light sterilization.
  7. Delsart, C., Cholet, C., Ghidossi, R., Grimi, N., Gontier, E., Gény, L., Vorobiev, E., & Mietton-Peuchot, M. (2014). Effects of pulsed electric fields on Cabernet Sauvignon grape berries and on the characteristics of wines. Food and Bioprocess Technology, 7, 424–436.CrossRefGoogle Scholar
  8. Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., & Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: a review. Canadian Journal of Microbiology, 53, 813–821.CrossRefGoogle Scholar
  9. Fava, J., Hodara, K., Nieto, A., Guerrero, S., Alzamora, S. M., & Castro, M. A. (2011). Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Research International, 44, 2938–2948.CrossRefGoogle Scholar
  10. Fernández, M., Manzano, S., de la Hoz, L., Ordóñez, J. A., & Hierro, E. (2009). Pulsed light inactivation of Listeria monocytogenes through different plastic films. Foodborne Pathogens and Disease, 6(10), 1265–1267.CrossRefGoogle Scholar
  11. Fleet, G. H. (2003). Yeast interactions and wine flavour. International Journal of Food Microbiology, 86, 11–22.CrossRefGoogle Scholar
  12. Glories, Y. (1984a). La couleur des vins rouges I. Connaisance de la Vigne et du Vin, 18, 195–217.Google Scholar
  13. Glories, Y. (1984b). La couleur des vins rouges II. Connaisance de la Vigne et du Vin, 18, 253–271.Google Scholar
  14. Gobbi, M., Comitini, F., Domizio, P., Romani, C., Lencioni, L., Mannazzu, I., & Ciani, M. (2013). Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiology, 33, 271–281.CrossRefGoogle Scholar
  15. Gómez-López, V. M., Ragaert, P., Debevere, J., & Devlieghere, F. (2007). Pulsed light for food decontamination: a review. Trends in Food Science & Technology, 18, 464–473.CrossRefGoogle Scholar
  16. Heinrich, V., Zunabovic, M., Bergmair, J., Kneifel, W., & Jäger, H. (2015). Post-packaging application of pulsed light for microbial decontamination of solid foods: a review. Innovative Food Science and Emerging Technologies, 30, 145–156.CrossRefGoogle Scholar
  17. Hiramoto, T. (1984). Method of sterilization. US Patent, 4, 464,336.Google Scholar
  18. Jackson, R. S. (2014). Wine science: principles and applications. 4 th edition (p. 355). Academic Press-Elsevier.Google Scholar
  19. Kaack, K., & Lyager, B. (2007). Treatment of slices from carrot (Daucus carota) using high intensity white pulsed light. European Food Research and Technology, 224, 561–566.CrossRefGoogle Scholar
  20. Kulkarni, P., Loira, I., Morata, A., Tesfaye, W., González, M. C., & Suárez-Lepe, J. A. (2015). Use of non-Saccharomyces yeast strains coupled with ultrasound treatment as a novel technique to accelerate ageing on lees of red wines and its repercussion in sensorial parameters. LWT - Food Science and Technology, 64, 1255–1262.CrossRefGoogle Scholar
  21. Lagunas-Solar, M. C., Piña, C., Macdonald, J. D., & Bolkan, L. (2006). Development of pulsed UV light processes for surface fungal disinfection of fresh fruits. Journal of Food Protection, 69(2), 376–384.CrossRefGoogle Scholar
  22. Loira, I., Vejarano, R., Bañuelos, M. A., Morata, A., Tesfaye, W., Uthurry, C., Villa, A., Cintora, I., & Suárez-Lepe, J. A. (2014). Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality. LWT - Food Science and Technology, 59, 915–922.CrossRefGoogle Scholar
  23. Loira, I., Morata, A., Comuzzo, P., Callejo, M. J., González, C., Calderón, F., & Suárez-Lepe, J. A. (2015). Use of Schizosaccharomyces pombe and Torulaspora delbrueckii strains in mixed and sequential fermentations to improve red wine sensory quality. Food Research International, 76, 325–333.CrossRefGoogle Scholar
  24. Morata, A. (2010). Nuevas tecnologías de conservación de alimentos. Ed. AMV, Madrid, Spain. Pp. 127–129.Google Scholar
  25. Morata, A., & Suárez-Lepe, J. A. (2016). In V. Ravishankar Rai (Ed.), New biotechnologies for wine fermentation and ageing. In: Advances in food biotechnology (First ed., p. 287). West Sussex: John Wiley & Sons, Ltd..Google Scholar
  26. Morata, A., Loira, I., Vejarano, R., Bañuelos, M. A., Sanz, P. D., Otero, L., & Suárez-Lepe, J. A. (2015a). Grape processing by high hydrostatic pressure: effect on microbial populations, phenol extraction and wine quality. Food and Bioprocess Technology, 8, 277–286.CrossRefGoogle Scholar
  27. Morata, A., Bañuelos, M. A., Tesfaye, W., Loira, I., Palomero, F., Benito, S., Callejo, M. J., Villa, A., Gonzalez, M. C., & Suarez-Lepe, J. A. (2015b). Electron beam irradiation of wine grapes: effect on microbial populations, phenol extraction and wine quality. Food and Bioprocess Technology, 8, 1845–1853.CrossRefGoogle Scholar
  28. Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. Food and Bioprocess Technology, A Review, 3, 13–23.CrossRefGoogle Scholar
  29. Pala, C. U., & Toklucu, A. K. (2011). Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. Journal of Food Composition and Analysis, 24, 790–795.CrossRefGoogle Scholar
  30. Puértolas, E., López, N., Condón, S., Raso, J., & Álvarez, I. (2009). Pulsed electric fields inactivation of wine spoilage yeast and bacteria. International Journal of Food Microbiology, 130, 49–55.CrossRefGoogle Scholar
  31. Rowan, N. J., MacGregor, S. J., Anderson, J. G., Fouracre, R. A., Mcllvaney, L., & Farish, O. (1999). Pulsed-light inactivation of food-related microorganisms. Applied and Environmental Microbiology, 65, 1312–1315.Google Scholar
  32. Santos, M. C., Nunes, C., Cappelle, J., Gonçalves, F. J., Rodrigues, A., Saraiva, J. A., & Coimbra, M. A. (2013). Effect of high pressure treatments on the physicochemical properties of a sulphur dioxide-free red wine. Food Chemistry, 141, 2558–2566.CrossRefGoogle Scholar
  33. Takeshita, K., Shibato, J., Sameshima, T., Fukunaga, S., Isobe, S., Arihara, K., & Itoh, M. (2003). Damage of yeast cells induced by pulsed light irradiation. International Journal of Food Microbiology, 85, 151–158.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Carlos Escott
    • 1
  • Cristian Vaquero
    • 1
  • Juan Manuel del Fresno
    • 1
  • Maria Antonia Bañuelos
    • 2
  • Iris Loira
    • 1
  • Shun-yu Han
    • 3
  • Yang Bi
    • 3
  • Antonio Morata
    • 1
    Email author return OK on get
  • Jose Antonio Suárez-Lepe
    • 1
  1. 1.enotecUPM, Dept. Química y Tecnología de Alimentos, Escuela Técnica Superior de Ingenieros AgrónomosUniversidad Politécnica de MadridMadridSpain
  2. 2.Dept. Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros AgrónomosUniversidad Politécnica de MadridMadridSpain
  3. 3.College of Food Science and EngineeringGansu Agricultural UniversityLanzhouChina

Personalised recommendations