Skip to main content

Advertisement

Log in

Contribution of Proteins to the Dielectric Properties of Dielectrically Heated Biomaterials

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this article, we report results on the behavior of selected proteins in solution and on how they could affect the overall absorption and distribution of electromagnetic energy within dielectrically heated biomaterials. Ovalbumin, bovine serum albumin (BSA), β-lactoglobulin (BLG), and lysozyme (Lys) proteins varying in molecular weight, structure, and isoelectric point were systematically screened for this study. Measurements were performed using an open-ended coaxial probe over a frequency range encompassing the industrial, scientific, and medical (ISM) bands (1–1800 MHz) at six concentration levels and 25 °C. Primary findings include discovery of an additional δ-dispersion region in addition to the previously observed two regions between the well-established β- and γ-dispersion regions for protein solutions, which we propose are a sub-set of multiple δ-dispersions in the said region. We hypothesize that the β-dispersion is a summation of these multiple δ-dispersions and their cumulative effect is manifested in the amount of heat generated within a dielectrically treated biomaterial. An individual protein’s contribution to the overall dielectric absorption was quantitatively determined to account for up to 10% of the energy absorbed by free water molecules. We derived a mixture formula that accurately predicted the dielectric constant (ε′) at the critical industrial 915 MHz frequency, which we propose to use in computational simulations for purposes of design and development of dielectric heating devices. Theoretical calculation of the local ε′ of individual proteins from their amino acid makeup resulted in an average of 2.7, closely matching previously reported results. An increase in the physical size of a protein resulted in a decrease in the overall electromagnetic absorption of the mixture. A similar effect was observed as protein concentration increased with more pronounced effects on the dielectric increments (∆ε′) and absorption decrements (∆ε″); the implication of such effect on energy absorption and heating is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Holy, M., Wang, Y., Tang, J., & Rasco, B. (2005). Dielectric properties of salmon (Oncorhynchus keta) and sturgeon (Acipenser transmontanus) caviar at radio frequency (RF) and microwave (MW) pasteurization frequencies. Journal of Food Engineering, 70(4), 564–570.

    Article  Google Scholar 

  • Alshami, A., Wang, Y., Tang, Y., & Rasco, B. (2007). Dielectric properties of food carbohydrates-proteins aqueous mixtures. Annual microwave heating symposium 2007. International Microwave Power Institute, p. 84.

  • Cametti, C., Marchetti, S., Gambi, C., & Onori, G. (2011). Dielectric relaxation spectroscopy of lysozyme aqueous solutions: analysis of the δ-dispersion and the contribution of the hydration water. The Journal of Physical Chemistry B, 115(21), 7144–7153.

    Article  CAS  Google Scholar 

  • Cullen, P. J., & Tiwari, B. K. (2011). Novel thermal and non-thermal technologies for fluid foods. Amsterdam: Academic.

    Google Scholar 

  • Debye, P. J. W. D. (1929). Polar molecules / by P. Debye. New York: Dover.

    Google Scholar 

  • Deloor, G. P. (1964). Dielectric properties of heterogeneous mixture. Applied Scientific Research, B(11), 310–319 310.

    Article  Google Scholar 

  • El Moznine, R., Smith, G., Polygalov, E., Suherman, P. M., & Broadhead, J. (2003). Dielectric properties of residual water in amorphous lyophilized mixtures of sugar and drug. Journal of Physics D-Applied Physics, 36(4), 330–335.

    Article  CAS  Google Scholar 

  • Essex, C. G., Symonds, M. S., Sheppard, R. J., Grant, E. H., Lamote, R., Soeewey, F., Rosseneu, M. Y., & Peeters, H. (1977). Five-component dielectric dispersion in bovine serum albumin solution. Physics in Medicine and Biology, 22(6), 1160–1167.

    Article  CAS  Google Scholar 

  • Foster, K. R., & Schwan, H. P. (1989). Dielectric properties of tissues and biological materials: a critical review. Critical Reviews in Biomedical Engineering, 17, 25–104.

    CAS  Google Scholar 

  • Fricke, H., Schwan, H. P., Li, K., & Bryson, V. (1956). A dielectric study of the low-conductance surface membrane in E. coli. Nature, 177(4499), 134–135.

    Article  CAS  Google Scholar 

  • Gabler, R. (1978). Electrical interactions in molecular biophysics : an introduction. New York: Academic.

    Google Scholar 

  • Gabriel, C., Gabriel, S., Grant, E. H., Halstead, B. S. J., & Mingos, D. M. P. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27, 213–223.

    Article  CAS  Google Scholar 

  • Grant, E. H. (1966). Dielectric dispersion in bovine serum albumen. Journal of Molecular Biology, 19(1), 133–139.

    Article  CAS  Google Scholar 

  • Grant, E. H., Keefe, S. E., & Takashima, S. (1968). The dielectric behavior of aqueous solutions of bovine serum albumin from radiowave to microwave frequencies. The Journal of Physical Chemistry, 72(13), 4373–4380.

    Article  CAS  Google Scholar 

  • Grant, E. H., South, G. P., Takashima, S., & Ichimura, H. (1971). Dielectric dispersion in aqueous solutions of oxyhaemoglobin and carboxyhaemoglobin. The Biochemical Journal, 122(5), 691–699.

    Article  CAS  Google Scholar 

  • Grant, E. H., Sheppard, R. J., & South, G. P. (1978). Dielectric behaviour of biological molecules in solution. Oxford: Clarendon Press.

    Google Scholar 

  • Grant, E. H., Mcclean, V. E., Nightingale, N. R., Sheppard, R. J., & Chapman, M. J. (1986). Dielectric behavior of water in biological solutions: studies on myoglobin, human low-density lipoprotein, and polyvinylpyrrolidone. Bioelectromagnetics, 7(2), 151–162.

    Article  CAS  Google Scholar 

  • Hagmann, M. J., Levin, R. L., Calloway, L., Osborn, A. J., & Foster, K. R. (1992). Muscle-equivalent phantom materials for 10-100 MHz. IEEE Transactions on Microwave Theory and Techniques, 40(4), 760–762.

    Article  Google Scholar 

  • Harvey, S. C., & Hoekestra, P. (1972). Dielectric relaxation spectra of water absorbed on lysozyme. The Journal of Physical Chemistry, 76(21), 2987–2994.

    Article  CAS  Google Scholar 

  • Hasted, J. B. (1973). Aqueous dielectrics. London: Chapman and Hall [Distributed in the U.S.A. by Halsted Press, a division of J. Wiley & Sons, New York.

    Google Scholar 

  • von Hippel, A. R. (1995). Dielectric materials and applications. Boston: Artech House.

    Google Scholar 

  • Kappe, C. O., Stadler, A., & Dallinger, D. (2012). Microwaves in organic and medicinal chemistry. Weinheim: Wiley.

    Book  Google Scholar 

  • Kirkwood, J. G., & Shumaker, J. B. (1952). The influence of dipole moment fluctuations on the dielectric increment of proteins in solution. Proc. N. A. S., 38, 855–862 855.

    Article  CAS  Google Scholar 

  • Mehdizadeh, M. (2015). Microwave/RF applicators and probes: for material heating, sensing, and plasma generation. William Andrew. Amsterdam.

  • Mijovic, J., Bian, Y., Gross, R. A., & Chen, B. (2005). Dynamics of proteins in hydrated state and in solution as studied by dielectric relaxation spectroscopy. Macromolecules, 38(26), 10812–10819.

    Article  CAS  Google Scholar 

  • Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97.

    Article  CAS  Google Scholar 

  • Mudgett, R. E. (1986). Electrical properties of foods. In M. A. Rao & S. S. H. Rizvi (Eds.), Engineering properties of foods (pp. 329–390). New York: Marcel Dekker.

    Google Scholar 

  • National Research Council (U.S.). Committee on Microwave Processing of Materials: an emerging industrial technology, Netlibrary Inc., National Research Council (U.S.). National Materials Advisory Board. and National Research Council (U.S.). Commission on Engineering and Technical Systems (1994). Microwave processing of materials.

  • Nüchter, M., Ondruschka, B., Bonrath, W., & Gum, A. (2004). Microwave assisted synthesis—a critical technology overview. Green Chemistry, 6(3), 128–141.

    Article  Google Scholar 

  • Oleinikova, A., Sasisanker, P., & Weingärtner, H. (2004). What can really be learned from dielectric spectroscopy of protein solutions? A case study of ribonuclease A. The Journal of Physical Chemistry B, 108(24), 8467–8474.

    Article  CAS  Google Scholar 

  • Oncley, J. L. (2003). Dielectric behavior and atomic structure of serum albumin. Biophysical Chemistry, 100(1–3), 151–158.

    CAS  Google Scholar 

  • Pennock, B. E., & Schwan, H. P. (1969). Further observations on the electrical properties of hemoglobin-bound water. The Journal of Physical Chemistry, 73(8), 2600–2610.

    Article  CAS  Google Scholar 

  • Pethig, R. (1979). Dielectric and electronic properties of biological materials. Chichester, Wiley.

  • Resurreccion, F., Luan, D., Tang, J., Liu, F., Tang, Z., Pedrow, P., & Cavalieri, R. (2015). Effect of changes in microwave frequency on heating patterns of foods in a microwave assisted thermal sterilization system. Journal of Food Engineering, 150, 99–105.

    Article  Google Scholar 

  • Reynolds, J. A., & Hough, J. M. (1957). Formulae for dielectric constant of mixtures. Proceedings of the Physical Society, I.XX(8), 760–775.

    Google Scholar 

  • Sasaki, K., Isimura, Y., Fujii, K., Wake, K., Watanabe, S., Kojima, M., Suga, R., & Hashimoto, O. (2015). Dielectric property measurement of ocular tissues up to 110 GHz using 1 mm coaxial sensor. Physics in Medicine and Biology, 60(16), 6273.

    Article  CAS  Google Scholar 

  • Schutz, C. N., & Warshel, A. (2001). What are the dielectric "constants" of proteins and how to validate electrostatic models? Proteins: Structure, Function, and Genetics, 44, 400–417.

    Article  CAS  Google Scholar 

  • Schwan, H. P. (1965). Electrical properties of bound water. Annals of the New York Academy of Sciences, 125, 344–354.

    Article  CAS  Google Scholar 

  • Schwan, H. P. (1983). Electrical properties of blood and its constituents: alternating current spectroscopy. Blut, 46(4), 185–197.

    Article  CAS  Google Scholar 

  • South, G. P., & Grant, E. H. (1974). Theory of dipolar relaxation in aqueous macromolecular solutions. Biopolymers, 13(9), 1777–1789.

    Article  CAS  Google Scholar 

  • Stratton, J. A. (1941). Electromagnetic theory (1st ed.). New York: McGraw-Hill Book Company, Inc..

    Google Scholar 

  • Stuchly, M. A., Athey, T. W., Samaras, G. M., & Taylor, G. E. (1982). Measurement of radio frequency permittivity of biological tissues with an open ended coaxial line: part II—experimental results. IEEE Transactions on Microwave Theory and Techniques, 30(1), 87–92.

    Article  Google Scholar 

  • Suherman, P. M., Taylor, P., & Smith, G. (2002). Low frequency dielectric study on hydrated ovalbumin. Journal of Non-Crystalline Solids, 305(1–3), 317–321.

    Article  CAS  Google Scholar 

  • Sun, E., Datta, A., & Lobo, S. (1995). Compsition-based prediction of dielectric properties of foods. Journal of Microwave Power and Electromagnetic Energy, 30(4), 205–212.

    Article  CAS  Google Scholar 

  • Swiss Institute Of Bioinformatics (SIB) 2006. The ExPASy (Expert Protein Analysis System) proteomics server. The ExPASy (Expert Protein Analysis System) proteomics server http://www.expasy.org/.

  • Takashima, S. (1972). Dielectric dispersion measurement of dielectric constant and conductivity. Methods in Enzymology, 26 PtC, 337–362.

    Article  Google Scholar 

  • Tang, J., Feng, H., & Lau, M. (2001). Microwave heating in food processing. In X. Young, J. Tang, C. Zhanege, & W. Xin (Eds.), Advances in agricultural engineering. New York: World Scientific Publisher.

    Google Scholar 

  • Thuéry, J., & Grant, E. H. (1992). Microwaves: industrial, scientific, and medical applications. London: Artech House.

    Google Scholar 

  • Tribelsky, M. I., & Fukumoto, Y. (2016). Laser heating of dielectric particles for medical and biological applications. Biomedical Optics Express, 7(7), 2781–2788.

    Article  Google Scholar 

  • Wang, S., Monzon, M., Gazit, Y., Tang, J., Mitcham, E. J., & Armstrong, J. W. (2005). Temperature-dependent dielectric properties of selected subtropical and tropical fruits and associated insect pests. Transactions of the ASAE, 48(5), 1873–1881.

    Article  Google Scholar 

  • Wig, T. (2001). Sterilization and pasteurization of foods using radio frequency heating. Washington: Washington State University.

    Google Scholar 

  • Wig, T., Tang, J., Wang, Y., Hallberg, L.M. and Koeral, A., 2000. FDTD simulation of energy distribution in packaged foods during rf heating. 2000, ASAE Annual International Meeting.

  • Wolf, M., Gulich, R., Lunkenheimer, P., & Loidl, A. (2012). Relaxation dynamics of a protein solution investigated by dielectric spectroscopy. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824(5), 723–730.

    Article  CAS  Google Scholar 

  • You, K., Abbas, Z., Malek, M., Cheng, E., & Mun, H. (2012). Modeling of dielectric relaxation for lossy materials at microwave frequencies using polynomial approaches. Jurnal Teknologi, 58(1).

Download references

Acknowledgments

This research was supported in part by the ND EPSCoR through NSF grant #IIA-135466 and through ND EPSCoR State funds. The authors also thank the U.S. Department of Agriculture, National Needs Fellowship grant program (2012-38420-19287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali S. Alshami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshami, A.S., Tang, J. & Rasco, B. Contribution of Proteins to the Dielectric Properties of Dielectrically Heated Biomaterials. Food Bioprocess Technol 10, 1548–1561 (2017). https://doi.org/10.1007/s11947-017-1920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1920-5

Keywords

Navigation