Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1521–1530 | Cite as

Microencapsulation of a Natural Antioxidant from Coffee—Chlorogenic Acid (3-Caffeoylquinic Acid)

  • B. Gonçalves
  • M. Moeenfard
  • F. Rocha
  • A. Alves
  • B. N. Estevinho
  • L. Santos
Original Paper


Chlorogenic acids, the main polyphenolic group present in coffee, which include the caffeoylquinic acids, are recognized as antioxidants with growing interest in pharmacological, cosmetic, and food applications. However, they can be easily oxidized and they are also very unstable when exposed to high temperatures. Therefore, they can suffer transesterification reactions during storage or food processing, limiting their applications. Nevertheless, this situation can be overcome or minimized by microencapsulation. The purpose of the present study was to prepare by a spray-drying process sodium alginate and modified chitosan microparticles with chlorogenic acid (3-CQA), characterize them (morphological analysis), and evaluate the release profile of 3-CQA from the microparticles in in vitro studies. Furthermore, their antioxidant activity and moisture content were determined. The results address the success of chlorogenic acid microencapsulation, resulting in stable microparticles with controlled release properties and good antioxidant activity, suggesting increasing applications in food and pharmaceutical industry.


Antioxidant activity Biopolymers Chlorogenic acid Controlled release studies Microencapsulation Spray drying 



This work was financially supported by the Project UID/EQU/00511/2013-LEPABE (Laboratory for Process Engineering, Environment, Biotechnology and Energy—EQU/00511) by FEDER funds through Programa Operacional Competitividade e Internacionalização—COMPETE2020 and by national funds through FCT—Fundação para a Ciência e a Tecnologia.

The authors want to thank FCT for the Postdoctoral grant SFRH/BPD/73865/2010 (B. N. Estevinho) and for the PhD grant SFRH/BD/79318/2011 (M. Moeenfard).


  1. Ayelign, A., & Sabally, K. (2013). Determination of chlorogenic acids (CGA) in coffee beans using HPLC. American Journal of Research Communication, 1(2), 78–91.Google Scholar
  2. de Azeredo, H. M. C. (2005). Encapsulação: aplicação à tecnologia de alimentos. Alim. Nutr. Araraquara, 89–97.Google Scholar
  3. Belay, A., & Gholap, A. V. (2009). Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. African Journal of Pure and Applied Chemistry, 3(11), 234–240. doi: 10.5897/AJPAC.Google Scholar
  4. Bradley Jr., R. L. (2010). Moisture and total solids analysis. In Food Analysis (pp. 85–215) doi: 10.1007/978-1-4419-1478-1_6
  5. Cano-Marquina, A., Tarín, J. J., & Cano, A. (2013). The impact of coffee on health. Maturitas, 75(1), 7–21. doi: 10.1016/j.maturitas.2013.02.002.CrossRefGoogle Scholar
  6. Carvalho, I. T., Estevinho, B. N., & Santos, L. (2015). Application of microencapsulated essential oils in cosmetic and personal health care products—a review. International Journal of Cosmetic Science, n/a-n/a. doi: 10.1111/ics.12232.Google Scholar
  7. Casanova, F., Estevinho, B. N., & Santos, L. (2016). Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technology, 297, 44–49. doi: 10.1016/j.powtec.2016.04.014.CrossRefGoogle Scholar
  8. Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., et al. (2014). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews. doi: 10.1007/s12393-014-9106-7.Google Scholar
  9. Duarte, G. S., Pereira, A. A., & Farah, A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chemistry, 118(3), 851–855. doi: 10.1016/j.foodchem.2009.05.042.CrossRefGoogle Scholar
  10. Estevinho, B. M. A. N., Rocha, F. A. N., Santos, L. M. D. S., & Alves, M. A. C. (2013a). Using water-soluble chitosan for flavour microencapsulation in food industry. Journal of Microencapsulation, 30(6), 571–579. doi: 10.3109/02652048.2013.764939.CrossRefGoogle Scholar
  11. Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013b). Microencapsulation with chitosan by spray drying for industry applications—a review. Trends in Food Science and Technology, 31(2), 138–155. doi: 10.1016/j.tifs.2013.04.001.CrossRefGoogle Scholar
  12. Estevinho, B. N., Damas, A. M., Martins, P., & Rocha, F. (2014a). Microencapsulation of β-galactosidase with different biopolymers by a spray-drying process. Food Research International, 64, 134–140. doi: 10.1016/j.foodres.2014.05.057.CrossRefGoogle Scholar
  13. Estevinho, B. N., Damas, A. M., Martins, P., & Rocha, F. (2014b). The influence of microencapsulation with a modified chitosan (water soluble) on β-galactosidase activity. Drying Technology, 32, 1575–1586. doi: 10.1080/07373937.2014.909843.CrossRefGoogle Scholar
  14. Estevinho, B. N., Ramos, I., & Rocha, F. (2015). Effect of the pH in the formation of β-galactosidase microparticles produced by a spray-drying process. International Journal of Biological Macromolecules, 78, 238–242. doi: 10.1016/j.ijbiomac.2015.03.049.CrossRefGoogle Scholar
  15. Estevinho, B. N., & Rocha, F. (2016). Microencapsulation in food biotechnology by a spray-drying process. In Ravishankar Rai V. (Ed.), Advances in Food Biotechnology (pp. 593–606). John Wiley & Sons, Ltd. doi: 10.1002/9781118864463.ch36
  16. Estevinho, B. N., Carlan, I., Blaga, A., & Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technology, 289, 71–78. doi: 10.1016/j.powtec.2015.11.019.CrossRefGoogle Scholar
  17. Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols—a review. Trends in Food Science & Technology, 21(10), 510–523. doi: 10.1016/j.tifs.2010.08.003.CrossRefGoogle Scholar
  18. Farah, A., & Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18(1), 23–36. doi: 10.1590/S1677-04202006000100003.CrossRefGoogle Scholar
  19. Farah, A., & Duarte, G. (2015). Bioavailability and metabolism of chlorogenic acids from coffee. In Coffee in Health and Disease Prevention (pp. 789–801).Google Scholar
  20. Farah A, Monteiro M, Donangelo CM, Lafay S (2008). 5-O-caffeoylquinic acid (5-CQA) from green coffee extract are highly bioavailable in humans. Journal of Nutrition, (September), 2309–2315. doi: 10.3945/jn.108.095554.Federal
  21. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121. doi: 10.1016/j.foodres.2007.07.004.CrossRefGoogle Scholar
  22. Gonçalves, A., Estevinho, B. N., & Rocha, F. (2016). Microencapsulation of vitamin A: a review. Trends in Food Science & Technology, 51, 76–87. doi: 10.1016/j.tifs.2016.03.001.CrossRefGoogle Scholar
  23. Gonçalves, A., Estevinho, B. N., & Rocha, F. (2017). Design and characterization of controlled-release vitamin A microparticles prepared by a spray-drying process. Powder Technology, 305, 411–417. doi: 10.1016/j.powtec.2016.10.010.CrossRefGoogle Scholar
  24. Komes, D., & Bušić, A. (2014). 3. Antioxidants in coffee. In Processing and Impact on Antioxidants in Beverages (pp. 25–32).Google Scholar
  25. Kumar, G. P., & Krishna, L. S. (2014). Formulation and evaluation of Vildagliptin sustained release microspheres. International Journal of Chemical and Natural Science, 2(6), 189–194. doi: 10.1017/CBO9781107415324.004.Google Scholar
  26. Lorentz, C., Pencreac’H, G., Soultani-Vigneron, S., Rondeau-Mouro, C., De Carvalho, M., Pontoire, B., et al. (2012). Coupling lipophilization and amylose complexation to encapsulate chlorogenic acid. Carbohydrate Polymers, 90, 152–158. doi: 10.1016/j.carbpol.2012.05.008.CrossRefGoogle Scholar
  27. Moeenfard, M., Rocha, L., & Alves, A. (2014). Quantification of caffeoylquinic acids in coffee brews by HPLC-DAD. Journal of Analytical Methods in Chemistry, 2014. doi: 10.1155/2014/965353.
  28. Monteiro, M. C., & Farah, A. (2012). Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops. Food Chemistry, 134(1), 611–614. doi: 10.1016/j.foodchem.2012.02.118.CrossRefGoogle Scholar
  29. Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3(4), 793–829. doi: 10.3390/pharmaceutics3040793.CrossRefGoogle Scholar
  30. Nallamuthu, I., Devi, A., & Khanum, F. (2014). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 10(3), 203–211. doi: 10.1016/j.ajps.2014.09.005.CrossRefGoogle Scholar
  31. Nesterenko, A., Alric, I., Silvestre, F., & Durrieu, V. (2013). Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Industrial Crops and Products, 42, 469–479. doi: 10.1016/j.indcrop.2012.06.035.CrossRefGoogle Scholar
  32. Niseteo, T., Komes, D., Belščak-Cvitanović, A., Horžić, D., & Budeč, M. (2012). Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition. Food Chemistry, 134(4), 1870–1877. doi: 10.1016/j.foodchem.2012.03.095.CrossRefGoogle Scholar
  33. Perrone, D., Farah, A., Donangelo, C. M., de Paulis, T., & Martin, P. R. (2008). Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chemistry, 106(2), 859–867. doi: 10.1016/j.foodchem.2007.06.053.CrossRefGoogle Scholar
  34. Qi, L., Shao-qian, C., Si-yi, L., Ying, Z., Li, G., & Si-yi, P. (2010). Microencapsulation of chlorogenic acid in yeast cells. Food Science, 31(10), 137–141.Google Scholar
  35. Ramírez-Ambrosi, M., Caldera, F., Trotta, F., Berrueta, L. Á., & Gallo, B. (2014). Encapsulation of apple polyphenols in β-CD nanosponges. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1), 85–92. doi: 10.1155/2013/251754.CrossRefGoogle Scholar
  36. Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., et al. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403(1–2), 136–138. doi: 10.1016/j.ijpharm.2010.09.035.CrossRefGoogle Scholar
  37. Shi, G., Rao, L., Yu, H., Xiang, H., Pen, G., Long, S., & Yang, C. (2007). Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. Journal of Food Engineering, 80(4), 1060–1067. doi: 10.1016/j.jfoodeng.2006.06.038.CrossRefGoogle Scholar
  38. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675. doi: 10.1016/j.jfca.2006.01.003.CrossRefGoogle Scholar
  39. De Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292–302. doi: 10.1016/j.idairyj.2009.11.008.CrossRefGoogle Scholar
  40. Yoo, S.-H., Song, Y.-B., Chang, P.-S., & Lee, H. G. (2006). Microencapsulation of alpha-tocopherol using sodium alginate and its controlled release properties. International Journal of Biological Macromolecules, 38(1), 25–30. doi: 10.1016/j.ijbiomac.2005.12.013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • B. Gonçalves
    • 1
  • M. Moeenfard
    • 1
  • F. Rocha
    • 1
  • A. Alves
    • 1
  • B. N. Estevinho
    • 1
  • L. Santos
    • 1
  1. 1.LEPABE, Departamento de Engenharia QuímicaFaculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations