Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1466–1478 | Cite as

Increasing Cold Tolerance of Cactus Pear Fruit by High-Temperature Conditioning and Film Wrapping

  • Salvatore D’Aquino
  • Innocenza Chessa
  • Paolo Inglese
  • Giorgia Liguori
  • Giuseppe Barbera
  • Maria Judith Ochoa
  • Daniela Satta
  • Amedeo Palma
Original Paper
  • 190 Downloads

Abstract

Pre-storage high-temperature conditioning (HTC, 38 °C, and 95% RH for 24 h) and individual film wrapping (IFW) with a perforated polyolefinic heat-shrinkable film were used as individual treatments or in combination to mitigate chilling injury of first crop cactus pear cv ‘Gialla’. The fruit was stored for 21 days at either 2 or 8 °C (CS) plus 1 week of simulated marketing conditions (SMC) at 20 °C. The reduction in peel disorders and decay in HTC-treated fruit stored at 2 °C was comparable to that detected in control fruit stored at 8 °C. IFW was more efficient than HTC in reducing peel disorders, almost completely inhibited weight loss, and preserved freshness in fruit stored at 8 °C as well as in those stored at 8 °C. The internal quality of the fruit (pH, total soluble solids, titratable acidity, vitamin C, polyphenols, betaxanthins, antioxidant capacity, acetaldehyde, and ethanol) was slightly affected by treatments. Combining HTC with IFW did not improve fruit tolerance to low temperature but reduced decay with respect to individual treatments. IFW with a perforated film in combination with HTC is a good means of overcoming the stringent conditions of cold quarantine treatments, maintaining fruit freshness and reducing decay in cold-stored cactus pears.

Keywords

Chilling injury Cold storage High-temperature condition Individual film wrapping Opuntia ficus-indica 

Notes

Acknowledgments

This work was supported by the National Research Council of Italy. The authors contributed equally to this study. The authors thank Mr. Domenico Mura for his technical support.

References

  1. Aghdam, M. S., & Bodbodak, S. (2014). Postharvest treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology, 7, 37–53.CrossRefGoogle Scholar
  2. Belay, Z. A., Caleb, O. J., & Opara, U. L. (2016). Modelling approaches for designing and evaluating the performance of modified atmosphere packaging (MAP) systems for fresh produce: a review. Food packaging and Shelf Life, 10, 1–15.CrossRefGoogle Scholar
  3. Ben-Yehoshua, S., & Porat, R. (2005). Heat treatments to reduce decay. In S. Ben-Yehoshua (Ed.), Environmentally friendly technologies for agricultural produce quality (pp. 11–42). Boca Raton: CRC Press, Taylor & Francis Group.CrossRefGoogle Scholar
  4. Ben-Yehoshua, S., & Rodov, V. (2003). Transpiration and water stress. In J. A. Bartz & J. K. Brecht (Eds.), Postharvest physiology and pathology of vegetables (pp. 111–159). New York: Marcel Dekker Inc..Google Scholar
  5. Ben-Yehoshua, S., Shapiro, B., Even-Chen, Z., & Lurie, S. (1983). Mode of action of plastic film in extending life of lemon and pepper fruits by alleviation of water stress. Plant Physiology, 73, 87–93.CrossRefGoogle Scholar
  6. Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and mechanism of antioxidant activity using the DPPH free radical method. LWT-Food Science and Technology, 30, 609–615.CrossRefGoogle Scholar
  7. Coria Cayupàn, Y. S., Ochoa, M. J., & Nazareno, M. A. (2011). Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening. Food Chemistry, 126, 514–519.CrossRefGoogle Scholar
  8. D’Aquino, S., Chessa, I., & Schirra, M. (2014). Heat treatment at 38 °C and 75-80% relative humidity ameliorate storability of cactus pear fruit (Opuntia ficus-indica cv ‘Gialla’). Food and Bioprocess Technology, 7, 1066–1077.CrossRefGoogle Scholar
  9. D’Aquino, S., Piga, A., Agabbio, M., & McCollum, T. G. (1998a). Film wrapping delays ageing of ‘Minneola’ tangelos under shelf-life conditions. Postharvest Biology and Technology, 14, 107–116.CrossRefGoogle Scholar
  10. D’Aquino, S., Piga, A., Agabbio, M., Molinu, M.G., Mura, D. (1998b). Response of cactus pear to high temperature conditioning and film wrapping. COST 914 COST 915 – Non Conventional Methods for the Control of Postharvest Disease and Microbiological Spoilage, Bologna, Italy 09-10-1997. pp. 263–268.Google Scholar
  11. D’Aquino, S., Schirra, M., Molinu, M. G., Tedde, M., & Palma, A. (2010). Preharvest aminoethoxyvinylglicine treatments reduce internal browning and prolong the shelf-life of early ripening pears. Scientia Horticulturae, 125, 353–360.CrossRefGoogle Scholar
  12. Dimitris, L., Pompodakis, N., Markellou, E., & Lionakis, S. M. (2005). Storage response of cactus pear fruit following hot water brushing. Postharvest Biology and Technology, 38, 145–151.CrossRefGoogle Scholar
  13. Fahmy, K., & Nakano, K. (2013). Influence of relative humidity on development of chilling injury in cucumber fruits during low temperature storage. Asia Pacific Journal of Sustainable Agriculture, Food and Energy, 1, 1–5.Google Scholar
  14. Gould, W. P., & Ware, A. B. (2008). Disinfestation with cold. In N. W. Heather & G. J. Hallman (Eds.), Pest management and phytosanitary trade barriers, Chapter (Vol. 7, pp. 96–110). UK: CAB International.Google Scholar
  15. Hatton, T. T. (1990). Reduction of chilling injury with temperature manipulation. In C. Y. Wang (Ed.), Chilling injury of horticultural crops (pp. 269–280). Boca Raton: CRC Press.Google Scholar
  16. Hussein, Z., Caleb, O. J., & Opara, U. L. (2015). Perforation-mediated modified atmosphere packaging of fresh and minimally processed produce—a review. Food Packaging and Shelf Life, 6, 7–20.CrossRefGoogle Scholar
  17. Kader, A. A., & Saltveit, M. E. (2003). Respiration and gas exchange. In J. A. Bartz & J. K. Brecht (Eds.), Postharvest physiology and pathology of vegetables (pp. 7–29). New York: Marcel Dekker Inc..Google Scholar
  18. Kyriacou, M. C., Emmanouilidou, M. G., & Soteriou, G. A. (2016). Asynchronous ripening behavior of cactus pear (Opuntia ficus-indica) cultivars with respect to physicochemical and physiological attributes. Food Chemistry, 211, 598–607.CrossRefGoogle Scholar
  19. Linke, M., & Geyer, M. (2013). Condensation dynamic in plastic film packaging of fruit and vegetables. Journal of Food Engineering, 116, 144–154.CrossRefGoogle Scholar
  20. López-Castañeda, J., Corrales-Garcia, J., Terrazas-Salgado, T., & Colina-Leòn, T. (2010). Effect of saturated air treatments on weight loss reduction and epicuticular changes in six varieties of cactus pears fruit (Opuntia spp.) Journal PACD, 12, 37–47.Google Scholar
  21. Lurie, S. (2008). Heat treatment for enhancing postharvest quality. In P. Paliyath, D. P. Murr, A. V. Handa, & S. Lurie (Eds.), Postharvest biology of fruits, vegetables and flowers (pp. 246–259). Ames: Blackwell.Google Scholar
  22. Lurie, S., & Ben-Yehoshua, S. (1986). Changes in membrane properties and abscisic acid during senescence of harvested bell pepper fruit. Journal of the American Society for Horticultural Science, 111, 886–889.Google Scholar
  23. Mistriotis, A., Briassoulis, D., Giannoulis, A., & D’Aquino, S. (2016). Design of biodegradable bio-based EMA packaging for fresh fruits and vegetables by using polylactic acid (PLA) films. Postharvest Biology and Technology, 115, 103–112.CrossRefGoogle Scholar
  24. Mir, N., & Beaudry, R. M. (2016). Modified Atmosphere Packaging. In K. C. Gross, C. Y. Wang, & M. Saltveit (Eds.), The commercial storage of fruits, vegetables, and florist and nursery stocks, Agriculture Handbook (Vol. 66, pp. 42–53). Washington, DC: U.S. Department of Agriculture, Agricultural Research Service Available from: http://ucanr.edu/datastoreFiles/234-2927.pdf.Google Scholar
  25. Mulas, M., & Schirra, M. (2007). The effect of heat conditioning treatments on the postharvest quality of horticultural crops. Stewart Postharvest Review, 3.Google Scholar
  26. Ochoa-Velasco, C. E., & Guerrero-Beltràn, J. A. (2016). The effects of modified atmospheres on prickly pear (Opuntia albicarpa) stored at different temperature. Postharvest quality of peeled prickly pear fruit treated with acetic acid and chitosan. Postharvest Biology and Technology, 111, 314–321.CrossRefGoogle Scholar
  27. Pantastico, E.B., Soule, J., Grierson, W. (1968). Chilling injury in tropical and subtropical fruits. II limes and grapefruit. Proceedings of the American Society for Horticultural Science, Tropical. Regions, 12, 171.Google Scholar
  28. Piga, A., D’Aquino, S., Agabbio, M., & Schirra, M. (1996). Storage life and quality attributes of cactus pears cv ‘Gialla’ as affected by packaging. Agricoltura Mediterranea, 126, 423–427.Google Scholar
  29. Piga, A., D’hallewin, G., D’Aquino, S., & Agabbio, M. (1997). Influence of film wrapping and UV irradiation on cactus pear quality after storage. Packaging Technology and Science, 10, 59–68.CrossRefGoogle Scholar
  30. Purvis, A. C. (1990). Relation of chilling stress to carbohydrate composition. In C. Y. Wang (Ed.), Chilling injury of horticultural crops (pp. 211–221). Boca Raton: CRC Press.Google Scholar
  31. Raison, J. K. (1980). Effect of low temperature on respiration. In D. D. Davies (Ed.), The biochemistry of plant—a comprehensive treatise (pp. 616–626). New York: Vol II - Metabolism and respiration. Academic Press.Google Scholar
  32. Rodov, V., Ben-Yehoshua, S., & Aharoni, N. (2010). Modified humidity packaging of fresh produce. Horticultural Reviews., 37, 281–329.Google Scholar
  33. Saltveit, M. E. (2016). Respiratory metabolism. In S. Pareek (Ed.), Postharvest ripening physiology of crops (pp. 139–156). Boca Raton: CRC Press.Google Scholar
  34. Schirra, M., Agabbio, M., D’Aquino, S., & McCollum, T. G. (1997). Postharvest heat conditioning effects on early ripening ‘Gialla’ cactus pear fruit. Hortscience, 32, 702–704.Google Scholar
  35. Schirra, M., Barbera, G., D’Aquino, S., La Mantia, T., & McDonald, R. E. (1996). Hot dips and high-temperature conditioning to improve shelf quality of late-crop cactus pear fruit. Tropical Science, 36, 159–165.Google Scholar
  36. Schirra, M., D’hallewin, G., Inglese, P., & La Mantia, T. (1999). Epicuticular changes and storage potential of cactus pear [Opuntia ficus-indica (L.) Mill.] fruit following gibberellic acid preharvest sprays and postharvest heat treatments. Postharvest Biology and Technology, 17, 79–88.CrossRefGoogle Scholar
  37. Shumye, G., Woldetsadik, K., & Fitiwi, I. (2014). Effect of integrated postharvest handling practices on quality and shelf-life of cactus pear [Opuntia ficus-indica (L.) Mill.] fruits. Journal of Postharvest Technology, 2(1), 68–79.Google Scholar
  38. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.Google Scholar
  39. Stintzing, F. C., Schieber, A., & Carle, R. (2003). Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research and Technology, 216, 303–311.CrossRefGoogle Scholar
  40. Ting, S. V., & Rouseff, R. L. (1986). Vitamins. In S. V. Ting & R. Rouseff (Eds.), Citrus fruit and their products: analysis and technology (pp. 121–136). New York: Marcel Dekker.Google Scholar
  41. Wang, C. Y. (2010). Alleviation of chilling injury in tropical and subtropical fruits. Acta Horticulturae, 864, 264–273.Google Scholar
  42. Yahia, E. M., & Sàenz, C. (2011). Cactus pear (Opuntia species). In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits (Vol. 2, pp. 290–329). Cambridge: Publishing Limited.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Salvatore D’Aquino
    • 1
  • Innocenza Chessa
    • 2
  • Paolo Inglese
    • 3
  • Giorgia Liguori
    • 3
  • Giuseppe Barbera
    • 3
  • Maria Judith Ochoa
    • 4
  • Daniela Satta
    • 5
  • Amedeo Palma
    • 1
  1. 1.Institute of Sciences of Food Production, National Research CouncilLi PuntiItaly
  2. 2.Department of the Nature and Land SciencesUniversity of SassariSassariItaly
  3. 3.Department of Agricultural and Forest SciencesUniversità degli Studi di PalermoPalermoItaly
  4. 4.Facultad de Agronomía y AgroindustriasUniversidad Nacional de Santiago del EsteroSantiago del EsteroArgentina
  5. 5.Department of Wood and Fruit TreeAgris Sardegna, Agricultural Research Agency of SardiniaCagliariItaly

Personalised recommendations