Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1495–1508 | Cite as

A Gompertz Model Approach to Microbial Inactivation Kinetics by High-Pressure Processing Incorporating the Initial Counts, Microbial Quantification Limit, and Come-Up Time Effects

  • Vinicio Serment-Moreno
  • Claudio Fuentes
  • José Ángel Guerrero-Beltrán
  • José Antonio Torres
  • Jorge Welti-Chanes
Original Paper


During come-up time (CUT), the time to reach a desired processing pressure, isobaric-isothermal conditions cannot be assumed in the estimation of kinetic parameters for the design of commercial high-pressure processing (HPP) treatments. Since CUT effects on microbial population, enzyme activity, and chemical concentration are often ignored, kinetic models incorporating the non-isobaric and non-isothermal conditions prevailing during CUT were the objective of this work. The analysis of peer-reviewed data on the HPP inactivation of bacteria (counts observations n = 919, 60 survival curves) and bacterial spores (n = 273, 12 curves) showed that a Gompertz model (GMPZ) approach is an effective alternative. The GMPZ parameter A was fixed as the difference between the initial population (log10 N o ) and the lower quantification limit of microbial counts (log10 N lim), while exponential equations were used to describe pressure effects on the lag time (λ) and the maximum inactivation rate (μmax). In low-acid media (pH > 4.5), λ decreased exponentially with pressure, allowing the identification of a theoretical pressure level (P λ) sufficient to initiate microbial inactivation during CUT. The parameter μmax exponentially increased with pressure for all evaluated datasets. Dynamic pressure effects during CUT were simplified by assuming isobaric conditions during CUT (t CUT), allowing to obtain GMPZ parameter estimates using only nonlinear regression (R 2 ∼ 0.938, σ 2 = 0.030–0.604). The proposed approach is a simpler, promising tool for a more informative analysis of the kinetics of microbial inactivation by HPP and should be further validated with additional experimental data.


High-pressure processing (HPP) Pressure-assisted thermal processing (PATP) Come-up time (CUT) Microbial inactivation kinetics Microbial quantification level Gompertz model 



The authors acknowledge the support from the Tecnológico de Monterrey (Research chair funds GEE 1A01001 and CDB081) and México’s CONACYT Scholarship Program (Grant no. 227790).


  1. Adbdullatif, T., Shellhammer, T. H., Ahmed, Y., & Chism, G. W. (2003). Pressure death and tailing behavior of Listeria monocytogenes strains having different barotolerances. Journal of Food Protection, 66(11), 2057–2061.CrossRefGoogle Scholar
  2. Ahn, J.-H., & Balasubramaniam, V. (2007a). Inactivation kinetics of Listeria innocua ATCC 33090 at various temperature heating-up and pressure building-up rates. Food Science and Biotechnology, 16(2), 255–259.Google Scholar
  3. Ahn, J., & Balasubramaniam, V. (2007b). Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing. Journal of Microbiology and Biotechnology, 17(4), 616–623.Google Scholar
  4. Ahn, J., & Balasubramaniam, V. M. (2014). Screening foods for processing-resistant bacterial spores and characterization of a pressure- and heat-resistant Bacillus licheniformis isolate. Journal of Food Protection, 77(6), 948–954.CrossRefGoogle Scholar
  5. Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 113(3), 321–329.CrossRefGoogle Scholar
  6. Alcántara-Zavala, A. E. (2013). Evaluación del tratamiento de altas presiones hidrostáticas en leche cruda de vaca como método equivalente a la pasteurización. MSc Thesis. Universidad Autónoma de Querétaro, Querétaro, QRO, MX.Google Scholar
  7. Avsaroglu, M. D., Buzrul, S., Alpas, H., Akcelik, M., & Bozoglu, F. (2006). Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure. International Journal of Food Microbiology, 108(1), 78–83.CrossRefGoogle Scholar
  8. Balasubramanian, S., & Balasubramaniam, V. M. (2003). Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Research International, 36(7), 661–668.CrossRefGoogle Scholar
  9. Basak, S., & Ramaswamy, H. S. (1996). Ultra high pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase. Food Research International, 29(7), 601–607.CrossRefGoogle Scholar
  10. Basak, S., Ramaswamy, H. S., & Piette, J. P. G. (2002). High pressure destruction kinetics of Leuconostoc mesenteroides and Saccharomyces cerevisiae in single strength and concentrated orange juice. Innovative Food Science and Emerging Technologies, 3, 223–231.CrossRefGoogle Scholar
  11. Baty, F., & Delignette-Muller, M.-L. (2004). Estimating the bacterial lag time: which model, which precision? International Journal of Food Microbiology, 91(3), 261–277.CrossRefGoogle Scholar
  12. Bermúdez-Aguirre, D., Guerrero-Beltrán, J. Á., Barbosa-Canovas, G., & Welti-Chanes, J. (2011). Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Food Science and Technology International, 17(6), 541–547.CrossRefGoogle Scholar
  13. Cole, M. B., Davis, K. W., Munro, G., Holyaok, C. D., & Kilsby, D. C. (1993). A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. Journal of Industrial Microbiology & Biotechnology, 12(3), 232–239.CrossRefGoogle Scholar
  14. Condron, R., Farrokh, C., Jordan, K., McClure, P., Ross, T., & Cerf, O. (2015). Guidelines for experimental design protocol and validation procedure for the measurement of heat resistance of microorganisms in milk. International Journal of Food Microbiology, 192, 20–25.CrossRefGoogle Scholar
  15. Chen, H., & Hoover, D. G. (2003). Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. International Journal of Food Microbiology, 87(1–2), 161–171.CrossRefGoogle Scholar
  16. Chen, H., & Hoover, D. G. (2004). Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott A in whole milk. Innovative Food Science and Emerging Technologies, 5(3), 269–276.CrossRefGoogle Scholar
  17. Chotyakul, N., Velazquez, G., & Torres, J. A. (2011). Assessment of the uncertainty in thermal food processing decisions based on microbial safety objectives. Journal of Food Engineering, 102(3), 247–256.CrossRefGoogle Scholar
  18. Denys, S., van Loey, A. M., & Hendrickx, M. E. (2000). A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innovative Food Science and Emerging Technologies, 1, 5–19.CrossRefGoogle Scholar
  19. Doona, C. J., Feeherry, F. E., Ross, E. W., Corradini, M. G., & Peleg, M. (2007). The quasi-chemical and Weibull distribution models of nonlinear inactivation kinetics of Escherichia coli ATCC 11229 by high pressure proocessing. In C. J. Doona, & F. E. Feeherry (Eds.), High pressure processing of foods (1 ed., IFT Press): Blackwell Publishing and the Institute of Food Technologists.Google Scholar
  20. Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J. A., & Welti-Chanes, J. (2015). High hydrostatic pressure combined with mild temperature for the preservation of comminuted orange: effects on functional compounds and antioxidant activity. Food and Bioprocess Technology, 8, 1032–1044.CrossRefGoogle Scholar
  21. Gayán, E., Condón, S., Álvarez, I., Nabakabaya, M., & Mackey, B. (2013). Effect of pressure-induced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and Staphylococcus aureus by high hydrostatic pressure. Applied and Environmental Microbiology, 79(13), 4041–4047.CrossRefGoogle Scholar
  22. Gil, M. M., Miller, F. A., Brandão, T. R. S., & Silva, C. L. M. (2011). On the use of the Gompertz model to predict microbial thermal inactivation under isothermal and non-isothermal conditions. Food Engineering Reviews, 3(1), 17–25.CrossRefGoogle Scholar
  23. Guan, D., Chen, H., & Hoover, D. (2005). Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. International Journal of Food Microbiology, 104, 145–153.CrossRefGoogle Scholar
  24. Guerrero-Beltrán, J. Á., Barbosa-Cánovas, G., & Welti-Chanes, J. (2011a). High hydrostatic pressure effect on natural microflora, Saccharomyces cerevisiae, Escherichia coli, and Listeria Innocua in Navel orange juice. International Journal of Food Engineering, 7(1), Article 14.Google Scholar
  25. Guerrero-Beltrán, J. Á., Barbosa-Cánovas, G., & Welti-Chanes, J. (2011b). High hydrostatic pressure effect on Saccharomyces cerevisiae, Escherichia coli and Listeria innocua in pear nectar. Journal of Food Quality, 34(6), 371–378.CrossRefGoogle Scholar
  26. Hartmann, C., & Delgado, A. (2002). Numerical simulation of convective and diffusive transport effects on high-pressure-induced inactivation process. Biotechnology and Bioengineering, 79(1), 94–104.CrossRefGoogle Scholar
  27. Hiremath, N. D., & Ramaswamy, H. S. (2012). High-pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. Journal of Food Processing and Preservation, 36(2), 113–125.CrossRefGoogle Scholar
  28. Hnosko, J., San-Martín Gonzalez, M. F., & Clark, S. (2012). High-pressure processing inactivates Listeria innocua yet compromises queso fresco crumbling properties. Journal of Dairy Science, 95(9), 4851–4862.CrossRefGoogle Scholar
  29. Jermann, C., Koutchma, T., Margas, E., Leadley, C., & Ros-Polski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science and Emerging Technologies, 31, 14–27.CrossRefGoogle Scholar
  30. Jung, L.-S., Lee, S. H., Kim, S., Cho, Y., & Ahn, J. (2014). Effect of high-pressure post-packaging pasteurization on microbiological quality of ready-to-use-vegetables. Journal of Food Processing and Preservation, 38(1), 406–412.CrossRefGoogle Scholar
  31. Knoerzer, K., Buckow, R., Sanguansri, P., & Versteeg, C. (2010). Adiabatic compression heating coefficients for high-pressure processing of water, propylene-glycol and mixtures—a combined experimental and numerical approach. Journal of Food Engineering, 96(2), 229–238.CrossRefGoogle Scholar
  32. Koseki, S., & Yamamoto, K. (2007). A novel approach to predicting microbial inactivation kinetics during high pressure processing. International Journal of Food Microbiology, 116(2), 275–282.CrossRefGoogle Scholar
  33. Koutchma, T., Guo, B., Patazca, E., & Parisi, B. (2005). High presure-high temperature sterilization: from kinetic analysis to process verification. Journal of Food Process Engineering, 28, 610–629.CrossRefGoogle Scholar
  34. Mañas, P., & Pagán, R. (2005). Microbial inactivation by new technologies of food preservation. Journal of Applied Microbiology, 98(6), 1387–1399.CrossRefGoogle Scholar
  35. Maturin, L., & Peeler, J. T. (2001). Aerobic plate count. In U. S. F. a. D. Administration (Ed.), Bacteriological analytical method (8° ed.).Google Scholar
  36. Mújica-Paz, H., Valdez-Fragoso, A., Tonello Samson, C., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, 4(6), 969–985.CrossRefGoogle Scholar
  37. Mussa, D. M., Ramaswamy, H. S., & Smith, J. P. (1999). High pressure destruction kinetics of Listeria monocytogenes Scott A in raw milk. Food Research International, 31(5), 343–350.CrossRefGoogle Scholar
  38. Palou, E., López-Malo, A., Barbosa-Cánovas, G., Welti-Chanes, J., & Swanson, B. G. (1997). Kinetic analysis of Zygosaccharomyces bailii inactivation by high hydrostatic pressure. LWT-Food Science and Technology, 30, 703–708.CrossRefGoogle Scholar
  39. Pandey, R. K., Ramaswamy, H. S., & Idziak, E. (2003). High pressure destruction kinetics of indigenous microflora and Escherichia coli in raw milk at two temperatures. Journal of Food Process Engineering, 26, 265–283.CrossRefGoogle Scholar
  40. Paredes-Sabja, D., Gonzalez, M., Sarker, M. R., & Torres, J. A. (2007). Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions. Journal of Food Science, 72(6), M202–M206.CrossRefGoogle Scholar
  41. Patazca, E., Koutchma, T., & Balasubramaniam, V. M. (2007). Quasi-adiabatic temperature increase during high pressure processing of selected foods. Journal of Food Engineering, 80(1), 199–205.CrossRefGoogle Scholar
  42. Peleg, M. (2003). Microbial survival curves: interpretation, mathematical modeling and utilization. Comments on Theoretical Biology, 8, 357–387.CrossRefGoogle Scholar
  43. Peleg, M. (2006). Generating nonisothermal heat inactivation curves with difference equations in real time (incremental method). In Advanced quantitative microbiology for foods and biosystems: models for predicting growth and inactvation, CRC series in contemporary food Science (1st ed., pp. 95–110). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  44. Peleg, M., Engel, R., Gonzalez-Martinez, C., & Corradini, M. G. (2002). Non-Arrhenius and non-WLF kinetics in food systems. Journal of the Science of Food and Agriculture, 82(12), 1346–1355.CrossRefGoogle Scholar
  45. Peleg, M., & Normand, M. D. (2004). Calculating microbial survival parameters and predicting survival curves from non-isothermal inactivation data. Critical Reviews in Food Science and Nutrition, 44(6), 409–418.CrossRefGoogle Scholar
  46. Rademacher, B., Werner, F., & Pehl, M. (2002). Effect of the pressurizing ramp on the inactivation of Listeria innocua considering thermofluiddynamical processes. Innovative Food Science and Emerging Technologies, 3(1), 19–24.CrossRefGoogle Scholar
  47. Ramaswamy, H. S., Riahi, E., & Idziak, E. (2003). High-pressure destruction kinetics of E. coli (29055) in apple juice. Journal of Food Science, 68(5), 1750–1756.CrossRefGoogle Scholar
  48. Ramaswamy, H. S., & Shao, Y. (2010). High pressure destruction kinetics of Clostridium sporogenes spores in salmon slurry at elevated temperatures. International Journal of Food Properties, 13, 1074–1091.CrossRefGoogle Scholar
  49. Ramaswamy, H. S., Shao, Y., & Zhu, S. (2010). High-pressure destruction kinetics of Clostridium sporogenes ATCC 11437 spores in milk at elevated quasi-isothermal conditions. Journal of Food Engineering, 96(2), 249–257.CrossRefGoogle Scholar
  50. Ramaswamy, H. S., Zaman, S. U., & Smith, J. P. (2008). High pressure destruction kinetics of Escherichia coli (O157:H7) and Listeria monocytogenes (Scott A) in a fish slurry. Journal of Food Engineering, 87(1), 99–106.CrossRefGoogle Scholar
  51. Ratphitagsanti, W., Ahn, J., Balasubramaniam, V. M., & Yousef, A. (2009). Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressure assisted thermal processing. Journal of Food Protection, 72(4), 775–782.CrossRefGoogle Scholar
  52. Rendueles, E., Omer, M. K., Alvseike, O., Alonso-Calleja, C., Capita, R., & Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT-Food Science and Technology, 44(5), 1251–1260.CrossRefGoogle Scholar
  53. Salgado, D., Torres, J. A., Welti-Chanes, J., & Velazquez, G. (2011). Effect of input data variability on estimations of the equivalent constant temperature time for microbial inactivation by HTST and retort thermal processing. Journal of Food Science, 76(6), E495–E502.CrossRefGoogle Scholar
  54. Samaranayake, C. P., & Sastry, S. K. (2010). In situ measurement of pH under high pressure. The Journal of Physical Chemistry B, 114(42), 13326–13332.CrossRefGoogle Scholar
  55. Samaranayake, C. P., & Sastry, S. K. (2013). In-situ pH measurement of selected liquid foods under high pressure. Innovative Food Science and Emerging Technologies, 17(0), 22–26.CrossRefGoogle Scholar
  56. Santillana Farakos, S. M., & Zwietering, M. H. (2011). Data analysis of the inactivation of foodborne microorganisms under high hydrostatic pressure to establish global kinetic parameters and influencing factors. Journal of Food Protection, 74(12), 2097–2106.CrossRefGoogle Scholar
  57. Sastry, S. K. (2016). Toward a philosophy and theory of volumetric nonthermal processing. Journal of Food Science, 81(6), E1431–E1446.CrossRefGoogle Scholar
  58. Saucedo-Reyes, D., Marco-Celdrán, A., Pina-Pérez, M. C., Rodrigo, D., & Martínez-López, A. (2009). Modeling survival of high hydrostatic pressure treated stationary- and exponential-phase Listeria innocua cells. Innovative Food Science and Emerging Technologies, 10, 135–141.CrossRefGoogle Scholar
  59. Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2014). High-pressure processing: Kinetic models for microbial and enzyme inactivation. Food Engineering Reviews, 6(3), 56–88.CrossRefGoogle Scholar
  60. Serment-Moreno, V., Franco-Vega, A., Escobedo-Avellaneda, Z., Fuentes, C., Torres, J. A., Dibildox-Alvarado, E., et al. (2016a). The logistic-exponential Weibull model as a tool to predict natural microflora inactivation of Agave mapsiaga aguamiel (agave sap) by high pressure treatments. Journal of Food Processing and Preservation, Available online. doi: 10.1111/jfpp.12816.Google Scholar
  61. Serment-Moreno, V., Fuentes, C., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2015). Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food and Bioprocess Technology, 8(6), 1244–1257.CrossRefGoogle Scholar
  62. Serment-Moreno, V., Torres, J. A., Fuentes, C., Ríos-Alejandro, J. G., Barbosa-Cánovas, G., & Welti-Chanes, J. (2016b). Limitations of the log-logistic model for the analysis of sigmoidal microbial inactivation data for high pressure processing (HPP). Food and Bioprocess Technology, 9(5), 901–916.CrossRefGoogle Scholar
  63. Spinner, J. (2014). Hiperbaric “can’t complain” about growth in HPP market. Food Production Daily, Retrieved May 12, 2014, from
  64. Syed, Q.-A., Reineke, K., Saldo, J., Buffa, M., Guamis, B., & Knorr, D. (2012). Effect of compression and decompression rates during high hydrostatic pressure processing on inactivation kinetics of bacterial spores at different temperatures. Food Control, 25(1), 361–367.CrossRefGoogle Scholar
  65. Syed, Q. A., Buffa, M., Guamis, B., & Saldo, J. (2013). Lethality and injuring the effect of compression and decompression rates of high hydrostatic pressure on Escherichia coli O157:H7 in different matrices. High Pressure Research, 33(1), 64–72.CrossRefGoogle Scholar
  66. Syed, Q. A., Buffa, M., Guamis, B., & Saldo, J. (2014). Effect of compression and decompression rates of high hydrostatic pressure on inactivation of Staphylococcus aureus in different matrices. Food and Bioprocess Technology, 7(4), 1202–1207.CrossRefGoogle Scholar
  67. Tejada-Ortigoza, V., Escobedo-Avellaneda, Z., Valdez-Fragoso, A., Mújica-Paz, H., & Welti-Chanes, J. (2014). Combined effect of high hydrostatic pressure and mild heat treatments on pectin methylesterase (PME) inactivation in comminuted orange. Journal of the Science of Food and Agriculture, 95(12), 2438–2444.CrossRefGoogle Scholar
  68. U. S. Food and Drug Administration. (2014). Kinetics of microbial inactivation for alternative food processing technologies—high pressure processing (p. 55). Silver Spring, MD: United States Food and Drug Administration.Google Scholar
  69. Vojdani, J. D., Beuchat, L. R., & Tauxe, R. V. (2008). Juice-associated outbreaks of human illness in the United States, 1995 through 2005. Journal of Food Protection, 71(2), 356–364.CrossRefGoogle Scholar
  70. Yao, J., Zhou, B., Wang, R., Wang, T., Hu, X., Liao, X., et al. (2015). Inactivation of Staphylococcus aureus by high hydrostatic pressure in saline solution and meat slurry with different initial inoculum levels. Food and Bioproducts Processing, 94, 592–600.CrossRefGoogle Scholar
  71. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Vinicio Serment-Moreno
    • 1
  • Claudio Fuentes
    • 2
  • José Ángel Guerrero-Beltrán
    • 3
  • José Antonio Torres
    • 1
  • Jorge Welti-Chanes
    • 1
  1. 1.Tecnológico de Monterrey, Escuela de Ingeniería y CienciasCentro de Biotecnología FEMSAMonterreyMexico
  2. 2.Statistics DepartmentOregon State UniversityCorvallisUSA
  3. 3.Departamento de Ingeniería Química, Alimentos y AmbientalUniversidad de las Américas-PueblaPueblaMexico

Personalised recommendations