Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1454–1465 | Cite as

Combined Use of Ultrasound and Vanillin to Improve Quality Parameters and Safety of Strawberry Juice Enriched with Prebiotic Fibers

  • L. Cassani
  • B. Tomadoni
  • A. Ponce
  • M. V. Agüero
  • M. R. Moreira
Original Paper

Abstract

In this work, a previously optimized preservation treatment (vanillin = 1.25 mg/mL; ultrasound = 7.5 min, 40 kHz, 180 W) was applied to strawberry juice enriched with inulin and oligofructose. The evolution of microbial, nutritional, and sensory parameters of treated juices was studied. It was confirmed that the inclusion of inulin and oligofructose had no negative implication regarding the quality of fresh juice. Furthermore, the prebiotic addition maintained sensory attributes of the product. The applied preservation treatment improved almost every quality attribute during storage, reducing microbial development, especially lactic acid bacteria and yeast and mold growth, which rapidly grew in untreated juices. Nutritional quality was also improved by the treatment as total polyphenol and total flavonoid content were increased and ascorbic acid content losses were reduced during storage, indicating higher antioxidant capacity. Overall, the evaluated sensory attributes of treated juices were deemed acceptable (>2.5). The addition of vanillin imparted pleasant flavor notes to the juice, compatible with the fruit product. Also, the performance of the treated juice was evaluated against postharvest contaminations with pathogens of interest in the food industry and of health concern (Escherichia coli O157:H7 and Listeria monocytogenes, evaluated through the surrogate Listeria innocua). The optimized treatment was able to reduce the counts of these microorganisms during storage reaching undetectable values after 7 days of storage. Thus, the combination of vanillin and ultrasound could be a feasible alternative to ensure safety and improve quality parameters of strawberry juice enriched with prebiotic fibers.

Keywords

Strawberry product Inulin and oligofructose Natural antimicrobial Non-thermal processing 

Notes

Acknowledgments

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), and Universidad Nacional de Mar del Plata (UNMDP).

References

  1. Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., et al. (2013). Effect of ultrasound on different quality parameters of apple juice. Ultrasonics Sonochemistry, 20(5), 1182–1187.CrossRefGoogle Scholar
  2. Alvarez, M. V., Ponce, A. G., & Moreira, M. D. R. (2013). Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT-Food Science and Technology, 50(1), 78–87.CrossRefGoogle Scholar
  3. BOE, B. O. d. E. (2001). Normas de higiene para la elaboración, distribución y comercio de comidas preparadas. Madrid, Spain, Real Decreto, 3484(2000), 1435–1441.Google Scholar
  4. Bortolomeazzi, R., Sebastianutto, N., Toniolo, R., & Pizzariello, A. (2007). Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chemistry, 100(4), 1481–1489.CrossRefGoogle Scholar
  5. Cassani, L., Tomadoni, B., Viacava, G., Ponce, A., & Moreira, M. (2016). Enhancing quality attributes of fiber-enriched strawberry juice by application of vanillin or geraniol. LWT-Food Science and Technology, 72, 90–98.CrossRefGoogle Scholar
  6. Cassani, L., Tomadoni, B., Moreira, MR., Ponce, A., & Aguero, MV. (2017). Optimization of inulin:Oligofructose proportion and non-thermal processing to enhance microbiological and sensory properties of fiber-enriched strawberry juice. LWT-Food Science and Technolog, 80, 446–455.Google Scholar
  7. Char, C., Guerrero, S., & Alzamora, S. M. (2009). Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addition. Food Control, 20(1), 67–74.CrossRefGoogle Scholar
  8. Char, C., Guerrero, S., & Alzamora, S. M. (2010). Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food and Bioprocess Technology, 3(5), 752–761.CrossRefGoogle Scholar
  9. Corte, F. V., Fabrizio, S. V., Salvatori, D. M., & Alzamora, S. M. (2004). Survival of Listeria innocua in apple juice as affected by vanillin or potassium sorbate. Journal of Food Safety, 24(1), 1–15.CrossRefGoogle Scholar
  10. Coussement, P. A. (1999). Inulin and oligofructose: safe intakes and legal status. The Journal of Nutrition, 129(7), 1412S–1417s.Google Scholar
  11. Crespo, P., Bordonaba, J. G., Terry, L. A., & Carlen, C. (2010). Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chemistry, 122(1), 16–24.CrossRefGoogle Scholar
  12. Davey, M. W., Montagu, M. v., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., et al. (2000). Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825–860.CrossRefGoogle Scholar
  13. Duan, J., & Zhao, Y. (2009). Antimicrobial efficiency of essential oil and freeze–thaw treatments against Escherichia coli O157:H7 and Salmonella enterica Ser. Enteritidis in strawberry juice. Journal of Food Science, 74(3), M131–M137.CrossRefGoogle Scholar
  14. Ferrante, S., Guerrero, S., & Alzamora, S. M. (2007). Combined use of ultrasound and natural antimicrobials to inactivate Listeria monocytogenes in orange juice. Journal of Food Protection®, 70(8), 1850–1856.CrossRefGoogle Scholar
  15. Fitzgerald, D., Stratford, M., Gasson, M., Ueckert, J., Bos, A., & Narbad, A. (2004). Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. Journal of Applied Microbiology, 97(1), 104–113.CrossRefGoogle Scholar
  16. Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87(S2), S287–S291.CrossRefGoogle Scholar
  17. Gómez, P. L., Welti-Chanes, J., & Alzamora, S. M. (2011). Hurdle technology in fruit processing. Annual Review of Food Science and Technology, 2, 447–465.CrossRefGoogle Scholar
  18. Goyeneche, R., Roura, S., Ponce, A., Vega-Gálvez, A., Quispe-Fuentes, I., Uribe, E., et al. (2015). Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. Journal of Functional Foods, 16, 256–264.CrossRefGoogle Scholar
  19. Illumination, I. C. O. (1978). Colorimetry: recommendations on uniform color spaces-color difference equations, psychometric color terms. Suppl. 2: Bureau Central de la CIE.Google Scholar
  20. Kallio, H., Hakala, M., Pelkkikangas, A. M., & Lapvetelainen, A. (2000). Sugars and acids of strawberry varieties. European Food Research and Technology, 212(1), 81–85.CrossRefGoogle Scholar
  21. Keenan, D. F., Brunton, N., Butler, F., Wouters, R., & Gormley, R. (2011). Evaluation of thermal and high hydrostatic pressure processed apple purees enriched with prebiotic inclusions. Innovative Food Science & Emerging Technologies, 12(3), 261–268.CrossRefGoogle Scholar
  22. Kim, H., & Beuchat, L. R. (2005). Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. Journal of Food Protection, 68(12), 2541–2552.CrossRefGoogle Scholar
  23. Klopotek, Y., Otto, K., & Böhm, V. (2005). Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. Journal of Agricultural and Food Chemistry, 53(14), 5640–5646.CrossRefGoogle Scholar
  24. Lanciotti, R., Gianotti, A., Patrignani, F., Belletti, N., Guerzoni, M., & Gardini, F. (2004). Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science & Technology, 15(3), 201–208.CrossRefGoogle Scholar
  25. Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martín-Belloso, O. (2012). Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials. Food and Bioproducts Processing, 90(2), 205–214.CrossRefGoogle Scholar
  26. Nazzaro, F., Fratianni, F., Sada, A., & Orlando, P. (2008). Synbiotic potential of carrot juice supplemented with Lactobacillus spp. and inulin or fructooligosaccharides. Journal of the Science of Food and Agriculture, 88(13), 2271–2276.CrossRefGoogle Scholar
  27. Piljac-Žegarac, J., Valek, L., Martinez, S., & Belščak, A. (2009). Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chemistry, 113(2), 394–400.CrossRefGoogle Scholar
  28. Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121(3), 313–327.CrossRefGoogle Scholar
  29. Rößle, C., Brunton, N., Gormley, R. T., Wouters, R., & Butler, F. (2011). Alginate coating as carrier of oligofructose and inulin to maintain the quality of fresh-cut apples. Journal of Food Science, 76(1), H19–H29.CrossRefGoogle Scholar
  30. Santhirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrasonics Sonochemistry, 20(5), 1276–1282.CrossRefGoogle Scholar
  31. Tomadoni, B., Cassani, L., Moreira, M., & Ponce, A. (2015a). Efficacy of vanillin and geraniol in reducing Escherichia coli O157:H7 on strawberry juice. LWT-Food Science and Technology, 64(2), 554–557.CrossRefGoogle Scholar
  32. Tomadoni, B., Moreira, M. D. R., Espinosa, J. P., & Ponce, A. (2015b). Individual and combined effects of pomegranate extract and ultrasonic treatments on kiwifruit juice quality parameters. Journal of Food Process Engineering. doi: 10.1111/jfpe.12339.Google Scholar
  33. Tomadoni, B., Viacava, G., Cassani, L., Moreira, M., & Ponce, A. (2016). Novel biopreservatives to enhance the safety and quality of strawberry juice. Journal of Food Science and Technology, 53(1), 281–292.CrossRefGoogle Scholar
  34. Tomadoni, B., Cassani, L., Viacava, G., Moreira, M., & Ponce, A. (2017). Effect of ultrasound and storage time on quality attributes of strawberry juice. Journal of Food Process Engineering. doi: 10.1111/jfpe.12533.Google Scholar
  35. Viacava, G. E., & Roura, S. I. (2015). Principal component and hierarchical cluster analysis to select natural elicitors for enhancing phytochemical content and antioxidant activity of lettuce sprouts. Scientia Horticulturae, 193, 13–21.CrossRefGoogle Scholar
  36. Viacava, G. E., Roura, S. I., & Agüero, M. V. (2015). Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity. Chemometrics and Intelligent Laboratory Systems, 146, 47–54.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • L. Cassani
    • 1
    • 2
  • B. Tomadoni
    • 1
    • 3
  • A. Ponce
    • 1
    • 3
  • M. V. Agüero
    • 4
  • M. R. Moreira
    • 1
    • 3
  1. 1.Grupo de Investigación en Ingeniería en Alimentos, Facultad IngenieríaUNMdPMar del PlataArgentina
  2. 2.Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT)Buenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN), Laboratorio de Microbiología Industrial: Tecnología de alimentosUniversidad de Buenos Aires (UBA)Ciudad Autónoma de Buenos AiresArgentina

Personalised recommendations