Skip to main content
Log in

Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The gelatin-based nanocomposite films (GNCFs) containing 0, 1, 3, and 5% zinc oxide nanoparticles (N-ZnO) and/or 0, 3, 5, and 10% chitin nanofibers (N-chitin) were prepared, and their water vapor permeability (WVP), chemical structure and microstructure, and their mechanical, thermal, and antifungal properties were investigated. Results showed that incorporation of N-ZnO improved WVP, mechanical, thermal, and antifungal properties of the gelatin-based films. Moreover, physicochemical and antifungal properties of the nanocomposite films improved by increasing N-ZnO concentration. However, applying N-chitin in gelatin films could not enhance barrier properties of the films against water vapor, probably due to the hydrophilic nature of N-chitin. On the other hand, tensile strength of the GNCFs containing N-chitin increased by an increase in nanoparticle concentration, up to 5%, Incorporation of N-chitin in the gelatin film raised both thermal stability and antifungal activity. Simultaneous incorporation of chitin and ZnO nanoparticles in the GNCFs had the interactive effect on improving the physicochemical and antimicrobial properties of GNCFs. For instance, thermograms of differential scanning calorimetry (DSC) showed that the GNCF containing both nanoparticles increased melting point and ∆H m in comparison with net gelatin film. Furthermore, thermograms of thermogravimetric analysis (TGA) indicated that applying both of nanoparticles in gelatin films led to higher thermal stability of polymer against decomposition at higher temperatures, compared to the gelatin film containing each of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arfat, Y., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41, 265–273.

    Article  CAS  Google Scholar 

  • Bao, S., Xu, S., & Wang, Z. (2009). Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles. Journal of Science of Food and Agriculture, 89, 2692–2700.

    Article  CAS  Google Scholar 

  • Bertan, L. C., Tanada-Palmu, P. S., Siani, A. C., & Grosso, C. R. F. (2005). Effect of fatty acids and ‘Brazilian elemi’ on composite films based on gelatin. Food Hydrocolloids, 19, 73–82.

    Article  CAS  Google Scholar 

  • Carvalho, R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 18, 717–726.

    Article  Google Scholar 

  • Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2011). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films—a comparative study. Food Hydrocolloids, 27(1), 175–184.

    Article  Google Scholar 

  • Chambi, H., & Grosso, C. (2006). Edible films produced with gelatin and casein crosslinked with transglutaminase. Food Research International, 39, 458–466.

    Article  CAS  Google Scholar 

  • Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80, 420–425.

    Article  CAS  Google Scholar 

  • Chen, Z., Mo, X. M., He, C. L., & Wang, H. S. (2008). Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydrate Polymers, 72, 410–418.

    Article  CAS  Google Scholar 

  • Espitia, P. J., Soares, N. F., Coimbra, J. S., Andrade, N. J., Cruz, R. S., & Medeiros, E. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology, 5, 1447–1464.

    Article  CAS  Google Scholar 

  • Ghanbarzadeh, B., Almasi, H., & Entezam, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11, 697–702.

    Article  CAS  Google Scholar 

  • Gomez-Guillen, M. C., Ihl, M., Bifani, V., Silva, A., & Montero, P. (2007). Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocolloids, 21, 1133–1143.

    Article  CAS  Google Scholar 

  • Harish Prashanth, K., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science and Technology, 18, 117–131.

    Article  Google Scholar 

  • He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215.

    Article  CAS  Google Scholar 

  • He, Q., Zhang, Y., Cai, X., & Wang, S. (2016). Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. International Journal of Biological Macromolecules, 84, 153–160.

    Article  CAS  Google Scholar 

  • Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172–182.

    Article  CAS  Google Scholar 

  • Kanmani, P., & Rhim, J. (2013). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644–652.

    Article  Google Scholar 

  • Kanmani, P., & Rhim, J. (2014a). Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chemistry, 148, 162–169.

    Article  CAS  Google Scholar 

  • Kanmani, P., & Rhim, J. (2014b). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190–199.

    Article  CAS  Google Scholar 

  • Kim, D., Jeon, K., Lee, Y., Seo, J., Seo, K., Han, H., & Khan, S. (2012). Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Progress in Organic Coating, 74, 435–442.

    Article  CAS  Google Scholar 

  • Li, X., Xing, Y., Jiang, Y., Ding, Y., & Li, W. (2009). Antimicrobial activities of ZnO powder coated PVC film to inactivate food pathogens. International Journal of Food Science and Technology, 44, 2161–2168.

    Article  CAS  Google Scholar 

  • Lian, Z., Zhang, Y., & Zhao, Y. (2016). Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2migration from film matrix in food stimulants. Innovative Food Science and Emerging Technologies, 33, 145–153.

    Article  CAS  Google Scholar 

  • Liu, F., Antoniou, J., Li, Y., Ma, J., & Zhong, F. (2015). Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocolloids, 45, 140–149.

    Article  CAS  Google Scholar 

  • Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science and Technology, 24, 19–29.

    Article  CAS  Google Scholar 

  • Lotti, C., Isaac, C. S., Branciforti, M. C., Alves, R. M. V., Liberman, S., & Bretas, R. E. S. (2008). Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. European Polymer Journal, 44(5), 1346–1357.

    Article  CAS  Google Scholar 

  • Lu, Y., Weng, L., & Zhang, L. (2004). Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules, 5, 1046–1051.

    Article  CAS  Google Scholar 

  • Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. (2014). Effects of nanorod-rich ZnO on rheological, sorption isotherm, and physicochemical properties of bovine gelatin films. LWT-Food Science and Technology, 58, 142–149.

    Article  Google Scholar 

  • Nasreen, Z., Khan, M. A., & Mustafa, A. I. (2016). Improved biodegradable radiation cured polymeric film prepared from chitosan-gelatin blend. Journal of Applied Chemistry, 2016, 1–11.

    Article  Google Scholar 

  • Nur Hanani, Z.A., McNamara, J., Roos, Y.H., Kerry, J.P. (2013). Effect of plasticizer content on the functional properties of extruded gelatin-based composite films. Food Hydrocolloids, 31, 264–269.

  • Ramos, O. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., & Pereira, R. N. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30, 110–122.

    Article  CAS  Google Scholar 

  • Rhim, J. W., Lee, S. B., & Hong, S. I. (2011). Preparation and characterization of agar/clay nanocomposite films: the effect of clay type. Journal of Food Science, 76, 40–48.

    Article  Google Scholar 

  • Rhim, J. W., Park, H. M., & Ha, C. S. (2013b). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38, 1629–1652.

    Article  CAS  Google Scholar 

  • Rhim, J. W., Wang, L. F., & Hong, S. I. (2013a). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33, 327–335.

    Article  CAS  Google Scholar 

  • Rouhi, J., Mahmud, S., Naderi, N., Ooi, C. H. R., & Mahmood, M. R. (2013). Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Research Letters, 8, 364–368.

    Article  Google Scholar 

  • Rubentheren, V., Ward, T. A., Chee, C. Y., & Tang, C. K. (2015). Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydrate Polymers, 115, 379–387.

    Article  CAS  Google Scholar 

  • Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishekar, H. (2017). Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT-Food Science and Technology, 76, 33–39.

    Article  CAS  Google Scholar 

  • Salaberria, A. M., Fernandes, S. C., Diaz, R. H., & Labidi, J. (2014). Processing of chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydrate Polymers, 116, 286–291.

    Article  Google Scholar 

  • Salaberria, A. M., Fernandes, S. C., Diaz, R. H., & Labidi, J. (2015a). Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydrate Polymers, 116, 286–291.

    Article  CAS  Google Scholar 

  • Salaberria, A. M., Labidi, J., & Fernandes, S. (2015b). Different routes to turn chitin into stunning nano-objects. European Polymer Journal, 68, 503–515.

    Article  CAS  Google Scholar 

  • Sanuja, S., Agalya, A., & Umapathy, M. J. (2015). Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. International Journal of Biological Macromolecules, 74, 76–84.

    Article  CAS  Google Scholar 

  • Shankar, S., Reddy, J., Rhima, J., & Kim, H. (2015a). Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers, 117, 468–475.

    Article  CAS  Google Scholar 

  • Shankar, S., Teng, X., Li, G., & Rhim, J. (2015b). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264–271.

    Article  CAS  Google Scholar 

  • Shiku, Y., Hamaguchi, P. Y., Benjakul, S., Visessanguan, W., & Tanaka, M. (2004). Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chemistry, 86, 493–499.

    Article  CAS  Google Scholar 

  • Sun, Q., Xi, T., Li, Y., & Xiong, L. (2014). Characterization of corn starch films reinforced with CaCO3 nanoparticles. PloS One, 9(9), 1–6.

    Google Scholar 

  • Tang, H., Lu, L., Li, L., Zhou, W., Xie, Z., & Zhang, L. (2013). Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chemical Engineering Journal, 234, 124–131.

    Article  CAS  Google Scholar 

  • Tankhiwale, R., & Bajpai, S. K. (2012). Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids and Surfaces B: Biointerfaces, 90, 16–20.

    Article  CAS  Google Scholar 

  • Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5(1), 1–6.

    Article  Google Scholar 

  • Tronci, G., Doyle, A., Russell, S. J., & Wood, D. J. (2013). Triple-helical collagen hydrogels via covalent aromatic functionalisation with 1,3-phenylenediacetic acid. Journal of Materials Chemistry B, 1(40), 5478–5488.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar M. Milani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahraee, S., Ghanbarzadeh, B., Milani, J.M. et al. Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles. Food Bioprocess Technol 10, 1441–1453 (2017). https://doi.org/10.1007/s11947-017-1907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1907-2

Keywords

Navigation