Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1441–1453 | Cite as

Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles

  • Samar Sahraee
  • Babak Ghanbarzadeh
  • Jafar M. Milani
  • Hamed Hamishehkar
Original Paper


The gelatin-based nanocomposite films (GNCFs) containing 0, 1, 3, and 5% zinc oxide nanoparticles (N-ZnO) and/or 0, 3, 5, and 10% chitin nanofibers (N-chitin) were prepared, and their water vapor permeability (WVP), chemical structure and microstructure, and their mechanical, thermal, and antifungal properties were investigated. Results showed that incorporation of N-ZnO improved WVP, mechanical, thermal, and antifungal properties of the gelatin-based films. Moreover, physicochemical and antifungal properties of the nanocomposite films improved by increasing N-ZnO concentration. However, applying N-chitin in gelatin films could not enhance barrier properties of the films against water vapor, probably due to the hydrophilic nature of N-chitin. On the other hand, tensile strength of the GNCFs containing N-chitin increased by an increase in nanoparticle concentration, up to 5%, Incorporation of N-chitin in the gelatin film raised both thermal stability and antifungal activity. Simultaneous incorporation of chitin and ZnO nanoparticles in the GNCFs had the interactive effect on improving the physicochemical and antimicrobial properties of GNCFs. For instance, thermograms of differential scanning calorimetry (DSC) showed that the GNCF containing both nanoparticles increased melting point and ∆H m in comparison with net gelatin film. Furthermore, thermograms of thermogravimetric analysis (TGA) indicated that applying both of nanoparticles in gelatin films led to higher thermal stability of polymer against decomposition at higher temperatures, compared to the gelatin film containing each of them.


Antifungal property Chitin Gelatin film Nanoparticle ZnO 


  1. Arfat, Y., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41, 265–273.CrossRefGoogle Scholar
  2. Bao, S., Xu, S., & Wang, Z. (2009). Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles. Journal of Science of Food and Agriculture, 89, 2692–2700.CrossRefGoogle Scholar
  3. Bertan, L. C., Tanada-Palmu, P. S., Siani, A. C., & Grosso, C. R. F. (2005). Effect of fatty acids and ‘Brazilian elemi’ on composite films based on gelatin. Food Hydrocolloids, 19, 73–82.CrossRefGoogle Scholar
  4. Carvalho, R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 18, 717–726.CrossRefGoogle Scholar
  5. Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2011). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films—a comparative study. Food Hydrocolloids, 27(1), 175–184.CrossRefGoogle Scholar
  6. Chambi, H., & Grosso, C. (2006). Edible films produced with gelatin and casein crosslinked with transglutaminase. Food Research International, 39, 458–466.CrossRefGoogle Scholar
  7. Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80, 420–425.CrossRefGoogle Scholar
  8. Chen, Z., Mo, X. M., He, C. L., & Wang, H. S. (2008). Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydrate Polymers, 72, 410–418.CrossRefGoogle Scholar
  9. Espitia, P. J., Soares, N. F., Coimbra, J. S., Andrade, N. J., Cruz, R. S., & Medeiros, E. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology, 5, 1447–1464.CrossRefGoogle Scholar
  10. Ghanbarzadeh, B., Almasi, H., & Entezam, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11, 697–702.CrossRefGoogle Scholar
  11. Gomez-Guillen, M. C., Ihl, M., Bifani, V., Silva, A., & Montero, P. (2007). Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocolloids, 21, 1133–1143.CrossRefGoogle Scholar
  12. Harish Prashanth, K., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science and Technology, 18, 117–131.CrossRefGoogle Scholar
  13. He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215.CrossRefGoogle Scholar
  14. He, Q., Zhang, Y., Cai, X., & Wang, S. (2016). Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. International Journal of Biological Macromolecules, 84, 153–160.CrossRefGoogle Scholar
  15. Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172–182.CrossRefGoogle Scholar
  16. Kanmani, P., & Rhim, J. (2013). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644–652.CrossRefGoogle Scholar
  17. Kanmani, P., & Rhim, J. (2014a). Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chemistry, 148, 162–169.CrossRefGoogle Scholar
  18. Kanmani, P., & Rhim, J. (2014b). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190–199.CrossRefGoogle Scholar
  19. Kim, D., Jeon, K., Lee, Y., Seo, J., Seo, K., Han, H., & Khan, S. (2012). Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Progress in Organic Coating, 74, 435–442.CrossRefGoogle Scholar
  20. Li, X., Xing, Y., Jiang, Y., Ding, Y., & Li, W. (2009). Antimicrobial activities of ZnO powder coated PVC film to inactivate food pathogens. International Journal of Food Science and Technology, 44, 2161–2168.CrossRefGoogle Scholar
  21. Lian, Z., Zhang, Y., & Zhao, Y. (2016). Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2migration from film matrix in food stimulants. Innovative Food Science and Emerging Technologies, 33, 145–153.CrossRefGoogle Scholar
  22. Liu, F., Antoniou, J., Li, Y., Ma, J., & Zhong, F. (2015). Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocolloids, 45, 140–149.CrossRefGoogle Scholar
  23. Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science and Technology, 24, 19–29.CrossRefGoogle Scholar
  24. Lotti, C., Isaac, C. S., Branciforti, M. C., Alves, R. M. V., Liberman, S., & Bretas, R. E. S. (2008). Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. European Polymer Journal, 44(5), 1346–1357.CrossRefGoogle Scholar
  25. Lu, Y., Weng, L., & Zhang, L. (2004). Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules, 5, 1046–1051.CrossRefGoogle Scholar
  26. Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. (2014). Effects of nanorod-rich ZnO on rheological, sorption isotherm, and physicochemical properties of bovine gelatin films. LWT-Food Science and Technology, 58, 142–149.CrossRefGoogle Scholar
  27. Nasreen, Z., Khan, M. A., & Mustafa, A. I. (2016). Improved biodegradable radiation cured polymeric film prepared from chitosan-gelatin blend. Journal of Applied Chemistry, 2016, 1–11.CrossRefGoogle Scholar
  28. Nur Hanani, Z.A., McNamara, J., Roos, Y.H., Kerry, J.P. (2013). Effect of plasticizer content on the functional properties of extruded gelatin-based composite films. Food Hydrocolloids, 31, 264–269.Google Scholar
  29. Ramos, O. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., & Pereira, R. N. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30, 110–122.CrossRefGoogle Scholar
  30. Rhim, J. W., Lee, S. B., & Hong, S. I. (2011). Preparation and characterization of agar/clay nanocomposite films: the effect of clay type. Journal of Food Science, 76, 40–48.CrossRefGoogle Scholar
  31. Rhim, J. W., Park, H. M., & Ha, C. S. (2013b). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38, 1629–1652.CrossRefGoogle Scholar
  32. Rhim, J. W., Wang, L. F., & Hong, S. I. (2013a). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33, 327–335.CrossRefGoogle Scholar
  33. Rouhi, J., Mahmud, S., Naderi, N., Ooi, C. H. R., & Mahmood, M. R. (2013). Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Research Letters, 8, 364–368.CrossRefGoogle Scholar
  34. Rubentheren, V., Ward, T. A., Chee, C. Y., & Tang, C. K. (2015). Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydrate Polymers, 115, 379–387.CrossRefGoogle Scholar
  35. Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishekar, H. (2017). Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT-Food Science and Technology, 76, 33–39.CrossRefGoogle Scholar
  36. Salaberria, A. M., Fernandes, S. C., Diaz, R. H., & Labidi, J. (2014). Processing of chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydrate Polymers, 116, 286–291.CrossRefGoogle Scholar
  37. Salaberria, A. M., Fernandes, S. C., Diaz, R. H., & Labidi, J. (2015a). Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydrate Polymers, 116, 286–291.CrossRefGoogle Scholar
  38. Salaberria, A. M., Labidi, J., & Fernandes, S. (2015b). Different routes to turn chitin into stunning nano-objects. European Polymer Journal, 68, 503–515.CrossRefGoogle Scholar
  39. Sanuja, S., Agalya, A., & Umapathy, M. J. (2015). Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. International Journal of Biological Macromolecules, 74, 76–84.CrossRefGoogle Scholar
  40. Shankar, S., Reddy, J., Rhima, J., & Kim, H. (2015a). Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers, 117, 468–475.CrossRefGoogle Scholar
  41. Shankar, S., Teng, X., Li, G., & Rhim, J. (2015b). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264–271.CrossRefGoogle Scholar
  42. Shiku, Y., Hamaguchi, P. Y., Benjakul, S., Visessanguan, W., & Tanaka, M. (2004). Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chemistry, 86, 493–499.CrossRefGoogle Scholar
  43. Sun, Q., Xi, T., Li, Y., & Xiong, L. (2014). Characterization of corn starch films reinforced with CaCO3 nanoparticles. PloS One, 9(9), 1–6.Google Scholar
  44. Tang, H., Lu, L., Li, L., Zhou, W., Xie, Z., & Zhang, L. (2013). Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chemical Engineering Journal, 234, 124–131.CrossRefGoogle Scholar
  45. Tankhiwale, R., & Bajpai, S. K. (2012). Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids and Surfaces B: Biointerfaces, 90, 16–20.CrossRefGoogle Scholar
  46. Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5(1), 1–6.CrossRefGoogle Scholar
  47. Tronci, G., Doyle, A., Russell, S. J., & Wood, D. J. (2013). Triple-helical collagen hydrogels via covalent aromatic functionalisation with 1,3-phenylenediacetic acid. Journal of Materials Chemistry B, 1(40), 5478–5488.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Samar Sahraee
    • 1
  • Babak Ghanbarzadeh
    • 2
  • Jafar M. Milani
    • 1
  • Hamed Hamishehkar
    • 3
  1. 1.Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
  2. 2.Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
  3. 3.Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran

Personalised recommendations