Food and Bioprocess Technology

, Volume 10, Issue 8, pp 1431–1440 | Cite as

The Effect of High-Voltage Atmospheric Cold Plasma Treatment on the Shelf-Life of Distillers Wet Grains

  • Janie D. McClurkin-Moore
  • Klein E. Ileleji
  • Kevin M. Keener
Original Paper


There are currently limitations to storing and feeding distillers wet grains (DWG) due to their potential for spoilage and mycotoxin contamination in storage. In this study, in-package treatments of DWG using high-voltage atmospheric cold plasma (HVACP) treatment and storage in modified atmosphere with carbon dioxide were investigated with the primary purpose of increasing product shelf-life. The conditions investigated were (1) HVACP treatment and modified atmosphere packaging (MAP) storage, (2) carbon dioxide-modified atmosphere storage, and (3) HVACP treatment and carbon dioxide-modified atmosphere storage, compared with a control sample with no treatment under MAP storage. Treated samples and controls were stored for 0, 7, 14, 21, and 28 days at 10 and 25 °C, after which treated samples were evaluated for their efficacy to control mold growth indicated by pH, microbial count (CFU/g)/log reduction, and peroxide (H2O2) level. There was a significant difference among the treatments indicated by CFU/g (P < 0.003) and pH (P < 0.0001). The HVACP treatment alone and its combination with carbon dioxide-modified atmosphere storage provided a better control of microbial growth and preservation in the wet substrate (>60% moisture), DWG for up to 28 days of storage at 10 and 25 °C. Both HVACP and the combination treatment showed high peroxide levels (100 mg/L) after treatment, which degraded in storage over time. It is thought that a better strategy for the combination treatment would be to treat substrate using HVACP with MAP having a high O2 concentration (65%) and store samples post-treatment in-package in a high CO2 environment.


Cold plasma Carbon dioxide Distillers wet grains Modified atmosphere packaging Microbial deactivation 



We would like to thank Mr. Russ Abarr of the New Energy Corp in South Bend, Indiana (New Energy Corp is no longer in operation), for supplying the distillers wet grains that were used in this study. We would also like to thank Jeanette Jensen, Research Associate/Lab Manager for the Food Technology and Development Laboratory at Purdue University, for assisting and training in using the Purdue high-voltage and atmospheric cold plasma (HVACP) system.


  1. Beuchat, L., Chmielewski, R., Keswani, J., Law, S. E., & Frank, J. F. (1999). Inactivation of aflatoxigenic Aspergilli by treatment with ozone. Letters in Applied Microbiology, 29, 202–205.CrossRefGoogle Scholar
  2. Chen, Y. (2014). High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of salmonella enteritidis on external surface. MS Thesis, Purdue University, 2014, Dissertations & Theses @ CIC Institutions, ProQuest.Google Scholar
  3. Christensen, C. M., & Kalscheur, K. F. (1974). Storage of cereal grains and their products. American Association of Cereal Chemists Microflora, 158–192.Google Scholar
  4. Christensen, D. L., Rolfe, K. M., Klopfenstein, T. J., & Erickson, G. E. (2010). Evaluation of storage of covers when wet distillers byproducts are mixed and stored with forages. Nebraska Beef Rep, MP93, 21.Google Scholar
  5. Deng, S., Ruan, R., Mok, C. K., Huang, G., Lin, X., & Chen, P. (2007). Inactivation of Escherichia coli on almonds using nonthermal plasma. Journal of Food Science, 72(2), 62–66.CrossRefGoogle Scholar
  6. Dobrynin, D., Wasko, K., Friedman, G., Fridman, A., & Fridman, G. (2011). Cold plasma steriliza of open wounds: live rat model. J Plasma Med, 1(2), 109–114.CrossRefGoogle Scholar
  7. Eto, H., Ono, Y., Ogino, A., & Nagatsu, M. (2008). Low temperature internal sterilization of medical plastic tubes using a linear dielectric barrier discharge. Plasma Processes and Polymers, 5(3), 269–274.CrossRefGoogle Scholar
  8. Fernandez, A., Shearer, N., Wilson, D. R., & Thompson, A. (2012). Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 152(3), 175–180.CrossRefGoogle Scholar
  9. Gordillo-Vazquez, F. J. (2008). Air plasma kinetics under the influence of sprites. Journal of Physics D: Applied Physics, 41, 234016.CrossRefGoogle Scholar
  10. Grabowski, L. R., Van Veldhuizen, E. M., Pemen, A. J. M., & Rutgers, W. R. (2007). Breakdown of methylene blue and methyl orange by pulsed corona discharge. Plasma Sources Science Technology, 16, 226–232.CrossRefGoogle Scholar
  11. Han, L., Patil, S., Keener, K. M., Cullen, P. J., & Bourke, P. (2014). Bacterial inactivation by high voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. Journal of Applied Microbiology, 116(4), 784–794. doi: 10.1111/jam.12426.CrossRefGoogle Scholar
  12. Harding, J.L. (2012). Spoilage of wet distillers grains plus solubles when stored in a bunker. MS. Thesis, University of Nebraska, Theses and Dissertation.
  13. IFST (1993). Shelf-life of foods—guidelines for its determination and prediction. Institute of Food Science and Technology, London. ISBN 0 905367 11 1.Google Scholar
  14. Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Modern food microbiology (7th ed.). New York, NY: Springer.Google Scholar
  15. Joshi, S. G., Cooper, M., Yost, A., Paff, M., Ercan, U. K., Fridman, G., Friedman, G., Fridman, A., & Brooks, A. D. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents Chemotherapy., 55(3), 1053–1062.CrossRefGoogle Scholar
  16. Keener, K. M., & Klockow, P. A. (2010). Non-equilibrium plasma generation in a sealed package. U.S. patent no. U.S. patent application 64796. Washington, D.C: U.S. Patent and Trademark Office.Google Scholar
  17. Kingsly, A. R. P., Ileleji, K. E., Clementson, C. L., Garcia, A., Maier, D. E., Stroshine, R. L., & Radcliff, S. (2010). The effect of process variables during drying on the physical and chemical characteristics of corn dried distillers grains with solubles (DDGS)—plant scale experiments. Bioresource Technology, 101, 193–199.CrossRefGoogle Scholar
  18. Klockow, P. A., & Keener, K. M. (2009). Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. LWT - Food Science and Technology, 42, 1047–1053.CrossRefGoogle Scholar
  19. Klopfenstein, T. J., Erickson, G. E., & Bremer, V. R. (2007). Feeding corn milling byproducts to feedlot cattle. Veterinary Clinics of North America: Food Animal Practice, 23, 223–245.Google Scholar
  20. Kung, L. (2010) Aerobic stability of silages. Proceedings of the Conference on Silage for Dairy Farms. Retrieved from
  21. Lehman, R. M., & Rosentrater, K. A. (2012). Aerobic stability of distillers wet grains as influenced by temperature. Journal of Science Food Agriculture, 93, 498–503.CrossRefGoogle Scholar
  22. Linley, E., Denyer, S. P., McDonnell, G., Simons, C., & Maillard, J.-Y. (2012). Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 67(7), 1589–1596.CrossRefGoogle Scholar
  23. Liu, S. and K. A. Rosentrater. 2012. Chemical composition of DDGS. In: Distillers grains—production, properties and utilization. CRC Press, Copyright by Taylor and Francis Group LLC.Google Scholar
  24. Lu, H., Patil, S., Keener, K. M., Cullen, P. J., & Bourke, P. (2013). Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. Journal of Applied Microbiology, 116, 784–794.CrossRefGoogle Scholar
  25. McClurkin, J. D. (2009). Control of stored grain fungi and off odors with ozone in a grain treatment system. MS Thesis Purdue University, 2009. Dissertations & Theses @ CIC Institutions, ProQuest.Google Scholar
  26. McClurkin-Moore, J.D. (2015). Shelf-life improvement of distillers wet grains with solubles. PhD Diss. Purdue University, 2015. Dissertations & Thes]ProQuest.Google Scholar
  27. McClurkin, J.D. and K.E. Ileleji. (2015). The effect of storage temperature and percentage of condensed distillers solubles on the shelf-life of distillers wet grains stored aerobically. Journal of Stored Product Research, 62(2015), 58–64.Google Scholar
  28. Müller, S., & Zahn, R. J. (2007). Air pollution control by non-thermal plasma. Contributions to Plasma Physics, 47(7), 520–529.CrossRefGoogle Scholar
  29. Nofsinger, G. W., VanCauwenberge, J. E., Bothast, R. J., & Kwolek, W. F. (1983). An evaluation of chemical methods to extend the allowable storage time of wet distillers’ grains. J. Agric. Food Chemisty, 31, 276–279.CrossRefGoogle Scholar
  30. Pardo, G., & Zufia, J. (2012). Life cycle assessment of food-preservation technologies. Journal of Cleaner Production., 28, 198–207.CrossRefGoogle Scholar
  31. Prusky, D., & Yakoby, N. (2003). Pathogenic fungi: leading or led by ambient pH? Molecular Plant Pathology, 4(6), 509–516.CrossRefGoogle Scholar
  32. Rosentrater, K., & Lehman, R. (2010). Predicting stability of distillers wet grains (DWG) with color analysis. Food and Bioprocess Technology, 3(2), 204–212.CrossRefGoogle Scholar
  33. Sensenig, R., Kalghatgi, S., Fridman, G., Shereshevsky, A. Brooks, A., Vailets, V., Gutsol, A., Fridman, A., & Friedman, G. (2008). Induction of apoptosis in melanoma cells by non-thermal atmospheric plasma discharge. SSO’s 61st Annual Cancer Symposium, Chicago, USA. March 13–16.Google Scholar
  34. Shreve, B., Thiex, N., & Wolf, M. (2006). National forage testing association reference method, dry matter by oven drying for 3 hr at 105 C. NFTA reference methods. Omaha, NB: National Forage Testing Association Scholar
  35. Spiehs, M. J., Whitney, M. H., & Shurson, G. C. (2002). Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. Journal of Animal Science, 2002(80), 2639–2645.CrossRefGoogle Scholar
  36. Tanino, M., Xilu, W., Taskashima, K., Katsura, S., & Mizuno, A. (2007). Sterilization using dielectric barrier discharge at atmospheric pressure. International Journal of Plasma Environmental Science and Technology, 1, 102–107.Google Scholar
  37. Vylkova, S., Carman, A. J., Danhof, H. A., Collette, J. R., Zhou, H., & Lorenz, M. C. (2011). The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by reusing extracellular pH. MBio, 2(3), 00055–00011. doi: 10.1128/mBio.00055-11.CrossRefGoogle Scholar
  38. Yelden, J. R., Buckner, C. D., Rolfe, K. M., Christensen, D. L., Klopfenstein, T. J., & Erickson, G. E. (2011). Nutrient composition of spoiled and non-spoiled wet by-products mixed and stored with straw. Nebraska Beef Ref, MP94, 18.Google Scholar
  39. Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2013). Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. Journal of Applied Microbiology, 114(3), 778–787.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Janie D. McClurkin-Moore
    • 1
  • Klein E. Ileleji
    • 1
  • Kevin M. Keener
    • 2
  1. 1.Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Food Science, Purdue AgriculturePurdue UniversityWest LafayetteUSA

Personalised recommendations