Skip to main content
Log in

Halloysite Nanotubes/Polyethylene Nanocomposites for Active Food Packaging Materials with Ethylene Scavenging and Gas Barrier Properties

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Novel polymeric active food packaging films comprising halloysite nanotubes (HNTs) as active agents were developed. HNTs which are hollow tubular clay nanoparticles were utilized as nanofillers absorbing the naturally produced ethylene gas that causes softening and aging of fruits and vegetables; at the same time, limiting the migration of spoilage-inducing gas molecules within the polymer matrix. HNT/polyethylene (HNT/PE) nanocomposite films demonstrated larger ethylene scavenging capacity and lower oxygen and water vapor transmission rates than neat PE films. Nanocomposite films were shown to slow down the ripening process of bananas and retain the firmness of tomatoes due to their ethylene scavenging properties. Furthermore, nanocomposite films also slowed down the weight loss of strawberries and aerobic bacterial growth on chicken surfaces due to their water vapor and oxygen barrier properties. HNT/PE nanocomposite films demonstrated here can greatly contribute to food safety as active food packaging materials that can improve the quality and shelf life of fresh food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeles, F. B., Morgan, P. W., & Saltveit, M. E. (1992). Ethylene in plant biology. Academic Press.

  • Ahmadi, S. J., Huang, Y., & Li, W. (2005). Fabrication and physical properties of EPDM–organoclay nanocomposites. Composites Science and Technology, 65(7–8), 1069–1076.

    Article  CAS  Google Scholar 

  • Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28(1–2), 1–63.

    Article  Google Scholar 

  • Alexandre, B., Langevin, D., Médéric, P., Aubry, T., Couderc, H., Nguyen, Q. T., et al. (2009). Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. Journal of Membrane Science, 328(1–2), 186–204.

    Article  CAS  Google Scholar 

  • Brody, A. L., Strupinsky, E. P., & Kline, L. R. (2001). Active packaging for food applications.

    Book  Google Scholar 

  • Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: a review. European Polymer Journal, 45(4), 967–984.

    Article  CAS  Google Scholar 

  • Cui, L., Cho, H. Y., Shin, J.-W., Tarte, N. H., & Woo, S. I. (2007). Polyethylene-montmorillonite nanocomposites: preparation, characterization and properties. Macromolecular Symposia, 260(1), 49–57.

    Article  CAS  Google Scholar 

  • Cui, Y., Kumar, S., Rao Kona, B., & van Houcke, D. (2015). Gas barrier properties of polymer/clay nanocomposites. RSC Advances, 5(78), 63669–63690.

    Article  CAS  Google Scholar 

  • Du, M., Guo, B., & Jia, D. (2006a). Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal, 42(6), 1362–1369.

    Article  CAS  Google Scholar 

  • Du, M., Guo, B., Liu, M., & Jia, D. (2006b). Preparation and characterization of polypropylene grafted halloysite and their compatibility effect to polypropylene/halloysite composite. Polymer Journal, 38(11), 1198–1204.

    Article  CAS  Google Scholar 

  • Forsgren, J., Jämstorp, E., Bredenberg, S., Engqvist, H., & Strømme, M. (2010). A ceramic drug delivery vehicle for oral administration of highly potent opioids. Journal of Pharmaceutical Sciences, 99(1), 219–226.

    Article  CAS  Google Scholar 

  • Gorrasi, G., Tortora, M., Vittoria, V., Pollet, E., Lepoittevin, B., Alexandre, M., & Dubois, P. (2003). Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer, 44(8), 2271–2279.

    Article  CAS  Google Scholar 

  • Handge, U. A., Hedicke-Höchstötter, K., & Altstädt, V. (2010). Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties. Polymer, 51(12), 2690–2699.

    Article  CAS  Google Scholar 

  • Jia, Z., Luo, Y., Guo, B., Yang, B., Du, M., & Jia, D. (2009). Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE. Polymer-Plastics Technology and Engineering, 48(6), 607–613.

    Article  CAS  Google Scholar 

  • Joshi, A., Abdullayev, E., Vasiliev, A., Volkova, O., & Lvov, Y. (2013). Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors. Langmuir: the ACS Journal of Surfaces and Colloids, 29(24), 7439–7448.

    Article  CAS  Google Scholar 

  • Lecouvet, B., Sclavons, M., Bourbigot, S., Devaux, J., & Bailly, C. (2011). Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer, 52(19), 4284–4295.

    Article  CAS  Google Scholar 

  • Liu, M., Guo, B., Du, M., Chen, F., & Jia, D. (2009). Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer, 50(13), 3022–3030.

    Article  CAS  Google Scholar 

  • Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498–1525.

    Article  CAS  Google Scholar 

  • Lvov, Y. M., DeVilliers, M. M., & Fakhrullin, R. F. (2016). The application of halloysite tubule nanoclay in drug delivery. Expert Opinion on Drug Delivery, 1–10

  • Marcilla, A., Gómez, A., Menargues, S., & Ruiz, R. (2005). Pyrolysis of polymers in the presence of a commercial clay. Polymer Degradation and Stability, 88(3), 456–460.

    Article  CAS  Google Scholar 

  • Morawiec, J., Pawlak, A., Slouf, M., Galeski, A., Piorkowska, E., & Krasnikowa, N. (2005). Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. European Polymer Journal, 41(5), 1115–1122.

    Article  CAS  Google Scholar 

  • Owoseni, O., Nyankson, E., Zhang, Y., Adams, S. J., He, J., McPherson, G. L., et al. (2014). Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation. Langmuir, 30(45), 13533–13541.

    Article  CAS  Google Scholar 

  • Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185–193.

    Article  CAS  Google Scholar 

  • P.M., V., & Morlanes, M. J. M. (2015). Polyethylene-based blends, composites and nanocomposities. Wiley.

  • Pedrazzoli, D., Pegoretti, A., Thomann, R., Kristóf, J., & Karger-Kocsis, J. (2015). Toughening linear low-density polyethylene with halloysite nanotubes. Polymer Composites, 36(5), 869–883.

    Article  CAS  Google Scholar 

  • Picard, E., Vermogen, A., Gerard, J., & Espuche, E. (2007). Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: influence of the clay content and dispersion state, consequences on modelling. Journal of Membrane Science, 292(1–2), 133–144.

    Article  CAS  Google Scholar 

  • Prashantha, K., Lacrampe, M. F., & Krawczak, P. (2011). Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters, 5(4), 295–307.

    Article  CAS  Google Scholar 

  • Rooney, M. L. (Ed.). (1995). Active food packaging. Boston, MA: Springer US.

    Google Scholar 

  • Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279–292.

    Article  CAS  Google Scholar 

  • Shemesh, R., Krepker, M., Natan, M., Danin-Poleg, Y., Banin, E., Kashi, Y., et al. (2015). Novel LDPE/halloysite nanotube films with sustained carvacrol release for broad-spectrum antimicrobial activity. RSC Advances, 5(106), 87108–87117.

    Article  CAS  Google Scholar 

  • Singh, V. P., Vimal, K. K., Kapur, G. S., Sharma, S., & Choudhary, V. (2016). High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. Journal of Polymer Research, 23(3), 43.

    Article  Google Scholar 

  • Srithammaraj, K., Magaraphan, R., & Manuspiya, H. (2012). Modified porous clay heterostructures by organic-inorganic hybrids for nanocomposite ethylene scavenging/sensor packaging film. Packaging Technology and Science, 25(2), 63–72.

    Article  CAS  Google Scholar 

  • Terry, L. A., Ilkenhans, T., Poulston, S., Rowsell, L., & Smith, A. W. J. (2007). Development of new palladium-promoted ethylene scavenger. Postharvest Biology and Technology, 45(2), 214–220.

    Article  CAS  Google Scholar 

  • Tully, J., Fakhrullin, R., & Lvov, Y. (2015). Halloysite clay nanotube composites with sustained release of chemicals (pp. 87–118). Netherlands: Springer.

    Google Scholar 

  • Vergaro, V., Lvov, Y. M., & Leporatti, S. (2012). Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromolecular Bioscience, 12(9), 1265–1271.

    Article  CAS  Google Scholar 

  • Ward, C. J., Song, S., & Davis, E. W. (2010). Controlled release of tetracycline-HCl from halloysite-polymer composite films. Journal of Nanoscience and Nanotechnology, 10(10), 6641–6649.

    Article  Google Scholar 

  • Wills, R. B. H., & Warton, M. A. (2004). Efficacy of potassium permanganate impregnated into alumina beads to reduce atmospheric ethylene. J. Amer. Soc. Hort. Sci., 129(3), 433–438.

    CAS  Google Scholar 

  • Wunderlich, B., & Czornyj, G. (1977). A study of equilibrium melting of polyethylene. Macromolecules, 10(5), 906–913.

    Article  CAS  Google Scholar 

  • Zhao, S., Cai, Z., & Xin, Z. (2008). A highly active novel β-nucleating agent for isotactic polypropylene. Polymer, 49(11), 2745–2754.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Eczacıbaşı ESAN (Turkey) for providing HNTs, Mr. Turgay Gonul for assistance with SEM and TEM analyses, and Dr. Ilhan Ozen for assistance with gas permeability measurements. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK; grant no. 113O872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayriye Unal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tas, C.E., Hendessi, S., Baysal, M. et al. Halloysite Nanotubes/Polyethylene Nanocomposites for Active Food Packaging Materials with Ethylene Scavenging and Gas Barrier Properties. Food Bioprocess Technol 10, 789–798 (2017). https://doi.org/10.1007/s11947-017-1860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1860-0

Keywords

Navigation