Food and Bioprocess Technology

, Volume 10, Issue 4, pp 789–798 | Cite as

Halloysite Nanotubes/Polyethylene Nanocomposites for Active Food Packaging Materials with Ethylene Scavenging and Gas Barrier Properties

  • C. Erdinc Tas
  • Saman Hendessi
  • Mustafa Baysal
  • Serkan Unal
  • Fevzi C. Cebeci
  • Yusuf Z. Menceloglu
  • Hayriye Unal
Original Paper

Abstract

Novel polymeric active food packaging films comprising halloysite nanotubes (HNTs) as active agents were developed. HNTs which are hollow tubular clay nanoparticles were utilized as nanofillers absorbing the naturally produced ethylene gas that causes softening and aging of fruits and vegetables; at the same time, limiting the migration of spoilage-inducing gas molecules within the polymer matrix. HNT/polyethylene (HNT/PE) nanocomposite films demonstrated larger ethylene scavenging capacity and lower oxygen and water vapor transmission rates than neat PE films. Nanocomposite films were shown to slow down the ripening process of bananas and retain the firmness of tomatoes due to their ethylene scavenging properties. Furthermore, nanocomposite films also slowed down the weight loss of strawberries and aerobic bacterial growth on chicken surfaces due to their water vapor and oxygen barrier properties. HNT/PE nanocomposite films demonstrated here can greatly contribute to food safety as active food packaging materials that can improve the quality and shelf life of fresh food products.

Keywords

Active food packaging Ethylene scavenging Barrier properties Halloysite nanotubes Nanocomposites 

Notes

Acknowledgements

The authors thank Eczacıbaşı ESAN (Turkey) for providing HNTs, Mr. Turgay Gonul for assistance with SEM and TEM analyses, and Dr. Ilhan Ozen for assistance with gas permeability measurements. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK; grant no. 113O872).

References

  1. Abeles, F. B., Morgan, P. W., & Saltveit, M. E. (1992). Ethylene in plant biology. Academic Press.Google Scholar
  2. Ahmadi, S. J., Huang, Y., & Li, W. (2005). Fabrication and physical properties of EPDM–organoclay nanocomposites. Composites Science and Technology, 65(7–8), 1069–1076.CrossRefGoogle Scholar
  3. Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28(1–2), 1–63.CrossRefGoogle Scholar
  4. Alexandre, B., Langevin, D., Médéric, P., Aubry, T., Couderc, H., Nguyen, Q. T., et al. (2009). Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. Journal of Membrane Science, 328(1–2), 186–204.CrossRefGoogle Scholar
  5. Brody, A. L., Strupinsky, E. P., & Kline, L. R. (2001). Active packaging for food applications.CrossRefGoogle Scholar
  6. Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: a review. European Polymer Journal, 45(4), 967–984.CrossRefGoogle Scholar
  7. Cui, L., Cho, H. Y., Shin, J.-W., Tarte, N. H., & Woo, S. I. (2007). Polyethylene-montmorillonite nanocomposites: preparation, characterization and properties. Macromolecular Symposia, 260(1), 49–57.CrossRefGoogle Scholar
  8. Cui, Y., Kumar, S., Rao Kona, B., & van Houcke, D. (2015). Gas barrier properties of polymer/clay nanocomposites. RSC Advances, 5(78), 63669–63690.CrossRefGoogle Scholar
  9. Du, M., Guo, B., & Jia, D. (2006a). Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal, 42(6), 1362–1369.CrossRefGoogle Scholar
  10. Du, M., Guo, B., Liu, M., & Jia, D. (2006b). Preparation and characterization of polypropylene grafted halloysite and their compatibility effect to polypropylene/halloysite composite. Polymer Journal, 38(11), 1198–1204.CrossRefGoogle Scholar
  11. Forsgren, J., Jämstorp, E., Bredenberg, S., Engqvist, H., & Strømme, M. (2010). A ceramic drug delivery vehicle for oral administration of highly potent opioids. Journal of Pharmaceutical Sciences, 99(1), 219–226.CrossRefGoogle Scholar
  12. Gorrasi, G., Tortora, M., Vittoria, V., Pollet, E., Lepoittevin, B., Alexandre, M., & Dubois, P. (2003). Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer, 44(8), 2271–2279.CrossRefGoogle Scholar
  13. Handge, U. A., Hedicke-Höchstötter, K., & Altstädt, V. (2010). Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties. Polymer, 51(12), 2690–2699.CrossRefGoogle Scholar
  14. Jia, Z., Luo, Y., Guo, B., Yang, B., Du, M., & Jia, D. (2009). Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE. Polymer-Plastics Technology and Engineering, 48(6), 607–613.CrossRefGoogle Scholar
  15. Joshi, A., Abdullayev, E., Vasiliev, A., Volkova, O., & Lvov, Y. (2013). Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors. Langmuir: the ACS Journal of Surfaces and Colloids, 29(24), 7439–7448.CrossRefGoogle Scholar
  16. Lecouvet, B., Sclavons, M., Bourbigot, S., Devaux, J., & Bailly, C. (2011). Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer, 52(19), 4284–4295.CrossRefGoogle Scholar
  17. Liu, M., Guo, B., Du, M., Chen, F., & Jia, D. (2009). Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer, 50(13), 3022–3030.CrossRefGoogle Scholar
  18. Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498–1525.CrossRefGoogle Scholar
  19. Lvov, Y. M., DeVilliers, M. M., & Fakhrullin, R. F. (2016). The application of halloysite tubule nanoclay in drug delivery. Expert Opinion on Drug Delivery, 1–10Google Scholar
  20. Marcilla, A., Gómez, A., Menargues, S., & Ruiz, R. (2005). Pyrolysis of polymers in the presence of a commercial clay. Polymer Degradation and Stability, 88(3), 456–460.CrossRefGoogle Scholar
  21. Morawiec, J., Pawlak, A., Slouf, M., Galeski, A., Piorkowska, E., & Krasnikowa, N. (2005). Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. European Polymer Journal, 41(5), 1115–1122.CrossRefGoogle Scholar
  22. Owoseni, O., Nyankson, E., Zhang, Y., Adams, S. J., He, J., McPherson, G. L., et al. (2014). Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation. Langmuir, 30(45), 13533–13541.CrossRefGoogle Scholar
  23. Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185–193.CrossRefGoogle Scholar
  24. P.M., V., & Morlanes, M. J. M. (2015). Polyethylene-based blends, composites and nanocomposities. Wiley.Google Scholar
  25. Pedrazzoli, D., Pegoretti, A., Thomann, R., Kristóf, J., & Karger-Kocsis, J. (2015). Toughening linear low-density polyethylene with halloysite nanotubes. Polymer Composites, 36(5), 869–883.CrossRefGoogle Scholar
  26. Picard, E., Vermogen, A., Gerard, J., & Espuche, E. (2007). Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: influence of the clay content and dispersion state, consequences on modelling. Journal of Membrane Science, 292(1–2), 133–144.CrossRefGoogle Scholar
  27. Prashantha, K., Lacrampe, M. F., & Krawczak, P. (2011). Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters, 5(4), 295–307.CrossRefGoogle Scholar
  28. Rooney, M. L. (Ed.). (1995). Active food packaging. Boston, MA: Springer US.Google Scholar
  29. Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279–292.CrossRefGoogle Scholar
  30. Shemesh, R., Krepker, M., Natan, M., Danin-Poleg, Y., Banin, E., Kashi, Y., et al. (2015). Novel LDPE/halloysite nanotube films with sustained carvacrol release for broad-spectrum antimicrobial activity. RSC Advances, 5(106), 87108–87117.CrossRefGoogle Scholar
  31. Singh, V. P., Vimal, K. K., Kapur, G. S., Sharma, S., & Choudhary, V. (2016). High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. Journal of Polymer Research, 23(3), 43.CrossRefGoogle Scholar
  32. Srithammaraj, K., Magaraphan, R., & Manuspiya, H. (2012). Modified porous clay heterostructures by organic-inorganic hybrids for nanocomposite ethylene scavenging/sensor packaging film. Packaging Technology and Science, 25(2), 63–72.CrossRefGoogle Scholar
  33. Terry, L. A., Ilkenhans, T., Poulston, S., Rowsell, L., & Smith, A. W. J. (2007). Development of new palladium-promoted ethylene scavenger. Postharvest Biology and Technology, 45(2), 214–220.CrossRefGoogle Scholar
  34. Tully, J., Fakhrullin, R., & Lvov, Y. (2015). Halloysite clay nanotube composites with sustained release of chemicals (pp. 87–118). Netherlands: Springer.Google Scholar
  35. Vergaro, V., Lvov, Y. M., & Leporatti, S. (2012). Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromolecular Bioscience, 12(9), 1265–1271.CrossRefGoogle Scholar
  36. Ward, C. J., Song, S., & Davis, E. W. (2010). Controlled release of tetracycline-HCl from halloysite-polymer composite films. Journal of Nanoscience and Nanotechnology, 10(10), 6641–6649.CrossRefGoogle Scholar
  37. Wills, R. B. H., & Warton, M. A. (2004). Efficacy of potassium permanganate impregnated into alumina beads to reduce atmospheric ethylene. J. Amer. Soc. Hort. Sci., 129(3), 433–438.Google Scholar
  38. Wunderlich, B., & Czornyj, G. (1977). A study of equilibrium melting of polyethylene. Macromolecules, 10(5), 906–913.CrossRefGoogle Scholar
  39. Zhao, S., Cai, Z., & Xin, Z. (2008). A highly active novel β-nucleating agent for isotactic polypropylene. Polymer, 49(11), 2745–2754.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • C. Erdinc Tas
    • 1
  • Saman Hendessi
    • 1
  • Mustafa Baysal
    • 1
  • Serkan Unal
    • 2
  • Fevzi C. Cebeci
    • 1
    • 2
  • Yusuf Z. Menceloglu
    • 1
  • Hayriye Unal
    • 2
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  2. 2.Sabanci University Nanotechnology Research and Application Center (SUNUM)IstanbulTurkey

Personalised recommendations