Food and Bioprocess Technology

, Volume 10, Issue 4, pp 759–769 | Cite as

Sous Vide Processing as an Alternative to Common Cooking Treatments: Impact on the Starch Profile, Color, and Shear Force of Potato (Solanum tuberosum L.)

  • Sergi Muñoz
  • Isabel Achaerandio
  • Yali Yang
  • Montserrat Pujolà
Original Paper
  • 275 Downloads

Abstract

This study aimed to assess the effect of sous vide cooking on the total and resistant starch content, color, and shear force in three potato cultivars (Agria, Agata, and Carrera). Potato strips were also cooked by three common treatments (boiling, frying, and microwaving) to evaluate the differences between the methods. According to principal component analysis (PCA), sous vide-processed cv. Agria and Agata potato strips were grouped with boiled samples, in contrast, cv. Carrera sous vide samples were grouped with microwaved samples. Higher water losses were associated with microwaved potatoes due to the diffusion of water inside the tuber. In addition, a significant decrease in shear force was obtained after microwaving and sous vide cooking (p < 0.05) irrespective of the treatment strength. The three cultivars became less bright, and the intensity of the color decreased; however, variations in the cook value (C 100, min) between treatments did not affect the lightness and hue angle. Regardless of the initial value of resistant starch and the intensity of the cooking process, all of the cultivars reached a final content of less than 5%. From our results, in-pack sterilization may be considered for application in the food industry as a technology that has a similar impact to conventional cooking treatments used on potato products.

Keywords

Total starch Resistant starch Shear force Color Cook value 

Notes

Acknowledgements

This work was carried out with the support of Torribas SA (Barcelona Spain). Author Yali Yang thanks the China Scholarship Council (File number. 201206990014) for their support.

References

  1. Adams, J. B., & Brown, M. (2007). Discoloration in raw and processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 47(3), 319–333.CrossRefGoogle Scholar
  2. Aina, A. J., Falade, K. O., Akingbala, J. O., & Titus, P. (2012). Physicochemical properties of caribbean sweet potato (Ipomoea batatas (L) Lam) starches. Food Bioprocess Technology, 5(2), 576–583.CrossRefGoogle Scholar
  3. Alvarez, M. D., & Canet, W. (2009). Thermal processing and quality optimization. In J. Singh & L. Kaur (Eds.), Advances in potato chemistry and technology. MA: Academic Press. Elsevier Burlington.Google Scholar
  4. AOAC (1990). AOAC Official Methods of Analysis. (15th ed., Vol. 2, p. 614). Arlington, VA, USA.Google Scholar
  5. AOAC 2002.02-2005. Resistant starch in starch and plant materials. Enzymatic digestion. AOAC Official Methods of Analysis. (19th Ed.). Arlington, VA, USA.Google Scholar
  6. AOAC 996.11-2005. Starch (total) in cereal products. Amyloglucosidase-α-amylase method. AOAC Official Methods of Analysis. (19th Ed.). Arlington, VA, USA.Google Scholar
  7. Baldwin, D. E. (2012). Sous vide cooking: a review. International Journal of Gastronomy and Food Science, 1(1), 15–30.CrossRefGoogle Scholar
  8. Błaszczak, W., Sadowska, J., Fornal, J., Vacek, J., Flis, B., & Zagórski-Ostoja, W. (2004). Influence of cooking and microwave heating on microstructure and mechanical properties of transgenic potatoes. Nahrung/Food, 48(3), 169–176.CrossRefGoogle Scholar
  9. Camire, M. E., Kubow, S., & Donnelly, D. J. (2009). Potatoes and human health. Critical Reviews in Food Science and Nutrition, 49(10), 823–840.CrossRefGoogle Scholar
  10. Chiavaro, E., Barbanti, D., Vittadini, E., & Massini, R. (2006). The effect of different cooking methods on the instrumental quality of potatoes (cv. Agata). Journal of Food Engineering, 77(1), 169–178.CrossRefGoogle Scholar
  11. Chiavaro, E., Mazzeo, T., Visconti, A., Manzi, C., Fogliano, V., & Pellegrini, N. (2012). Nutritional quality of sous vide cooked carrots and Brussels sprouts. Journal of Agricultural and Food Chemistry, 60(23), 6019–6025.CrossRefGoogle Scholar
  12. Costa, A. I. A., & Jongen, W. M. F. (2010). Designing new meals for an ageing population. Critical Reviews in Food Science and Nutrition, 50(6), 489–502.CrossRefGoogle Scholar
  13. De Wilde, T., De Meulenaer, B., Mestdagh, F., Govaert, Y., Ooghe, W., Fraselle, S., Demeulemeester, K., Van Peteghem, C., Calus, A., Degroodt, J.-M., & Verhé, R. (2006). Selection criteria for potato tubers to minimize acrylamide formation during frying. Journal of Agricultural and Food Chemistry, 54(6), 2199–2205.CrossRefGoogle Scholar
  14. Fernandes, G., Velangi, A., & Wolever, T. (2005). Glycemic index of potatoes commonly consumed in North America. Journal of the American Dietetic Association, 105(4), 557–562.CrossRefGoogle Scholar
  15. García-Alonso, A., & Goñi, I. (2000). Effect of processing on potato starch: in vitro availability and glycaemic index. Starch - Stärke, 52(2–3), 81–84.CrossRefGoogle Scholar
  16. García-Segovia, P., Andrés-Bello, A., & Martínez-Monzó, J. (2008). Textural properties of potatoes (Solanum tuberosum L. cv. Monalisa) as affected by different cooking processes. Journal of Food Engineering, 88(1), 28–35.CrossRefGoogle Scholar
  17. Gökmen, V., & Palazoğlu, T. K. (2009). Measurement of evaporated acrylamide during frying of potatoes: effect of frying conditions and surface area-to-volume ratio. Journal of Food Engineering, 93, 172–176.CrossRefGoogle Scholar
  18. Hejtmánková, K., Kotíková, Z., Hamouz, K., Pivec, V., Vacek, J., & Lachman, J. (2013). Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. Journal of Food Composition and Analysis, 32(1), 20–27.CrossRefGoogle Scholar
  19. Hyytiä-Trees, E., Skyttä, E., Mokkila, M., Kinnunen, A., Lindström, M., Lähteenmäki, L., Ahvenaiben, R., & Korkeala, H. (2000). Safety evaluation of sous-vide-processed products with respect to nonproteolytic Clostridium botulinum by use of challenge studies and predictive microbiological models. Applied and Environmental Microbiology, 66(1), 223–229.CrossRefGoogle Scholar
  20. Iborra-Bernad, C., García-Segovia, P., & Martínez-Monzó, J. (2014). Effect of vacuum cooking treatment on physicochemical and structural characteristics of purple-flesh potato. International Journal of Food Science and Technology, 49(4), 943–951.CrossRefGoogle Scholar
  21. Kingman, S. M., & Englyst, H. N. (1994). The influence of food preparation methods on the in-vitro digestibility of starch in potatoes. Food Chemistry, 49(2), 181–186.CrossRefGoogle Scholar
  22. Kozempel, M. F. (1988). Modeling the kinetics of cooking and precooking potatoes. Journal of Food Science, 53(3), 753–755.CrossRefGoogle Scholar
  23. Krokida, M. K., Oreopoulou, V., Maroulis, Z. B., & Marinos-Kouris, D. (2001). Colour changes during deep fat frying. Journal of Food Engineering, 48(3), 219–225.CrossRefGoogle Scholar
  24. Lante, A., & Zocca, F. (2010). Effect of β-cyclodextrin addition on quality of precooked vacuum packed potatoes. LWT-Food Science and Technology, 43(3), 409–414.CrossRefGoogle Scholar
  25. Lemmens, L., Colle, I., Knockaert, G., Van Buggenhout, S., Van Loey, A., & Hendrickx, M. (2013). Influence of pilot scale in pack pasteurization ad sterilization treatments on nutritional and textural characteristics of carrot pieces. Food Research International, 50(2), 526–533.CrossRefGoogle Scholar
  26. Ling, B., Tang, J., Kong, F., Mitcham, E. J., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: a review. Food Bioprocess Technology, 8(2), 343–358.CrossRefGoogle Scholar
  27. Lu, W., Haynes, K., Wiley, E., & Clevidence, B. (2001). Carotenoid content and color in diploid potatoes. Journal of the American Society for Horticultural Science, 126(6), 722–726.Google Scholar
  28. Martínez-Hernández, G. B., Artés-Hernández, F., Colares-Souza, F., Gómez, P. A., García-Gómez, P., & Artés, F. (2013). Innovative cooking techniques for improving the overall quality of a Kailan-hybrid broccoli. Food Bioprocess Technology, 6(8), 2135–2149.CrossRefGoogle Scholar
  29. Monro, J., Mishra, S., Blandford, E., Anderson, J., & Genet, R. (2009). Potato genotype differences in nutritionally distinct starch fractions after cooking and cooking plus storing cool. Journal of Food Composition and Analysis, 22(6), 539–545.CrossRefGoogle Scholar
  30. Mulinacci, N., Ieri, F., Giaccherini, C., Innocenti, M., Andrenelli, L., Canova, G., Saracchi, M., & Casiraghi, M. C. (2008). Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. Journal of Agricultural and Food Chemistry, 56(24), 11830–11837.CrossRefGoogle Scholar
  31. Pedreschi, F., Moyano, P., Kaack, K., & Granby, K. (2005). Colour changes and acrylamide formation in fried potato slices. Food Research International, 38(1), 1–9.CrossRefGoogle Scholar
  32. Pedreschi, F., Bunger, A., Skurtys, O., Allen, P., & Rojas, X. (2012). Grading of potato chips according to their sensory quality determined by color. Food Bioprocess Technology, 5(6), 2401–2408.CrossRefGoogle Scholar
  33. Pravisani, C. I., & Calvelo, A. (1986). Minimum cooking time for potato strip frying. Journal of Food Science, 51(3), 614–617.CrossRefGoogle Scholar
  34. Van Dijk, C., Fischer, M., Holm, J., Beekhuizen, J. G., Stolle-Smits, T., & Boeriu, C. (2002). Texture of cooked potatoes (Solanum tuberosum). 1. Relationships between dry matter content, sensory-perceived texture, and near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 50(18), 5082–5088.CrossRefGoogle Scholar
  35. Yang, Y., Achaerandio, I., & Pujolà, M. (2015). Classification of potato cultivars to establish their processing aptitude. Journal of the Science Food and Agriculture. doi: 10.1002/jsfa.7104.Google Scholar
  36. AOAC (1990). AOAC Official Methods of Analysis (15th ed., Vol. 2, p. 614). Arlington, VA, USA.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sergi Muñoz
    • 1
  • Isabel Achaerandio
    • 1
  • Yali Yang
    • 1
  • Montserrat Pujolà
    • 1
  1. 1.Departament d’Enginyeria Agroalimentària i Biotecnologia, Escola Superior d’Agricultura de BarcelonaUniversitat Politècnica de Catalunya BarcelonaTechCastelldefelsSpain

Personalised recommendations