Food and Bioprocess Technology

, Volume 10, Issue 4, pp 720–729 | Cite as

Modeling the Soluble Solids and Storage Temperature Effects on Byssochlamys fulva Growth in Apple Juices

  • Andréia Tremarin
  • Gláucia M. F. Aragão
  • Beatriz C. M. Salomão
  • Teresa R. S. Brandão
  • Cristina L. M. Silva
Original Paper


Byssochlamys fulva is an ascospore producer fungus known to be heat resistant and commonly found in fruit juices. This work aims at studying the influence of soluble solid content and storage temperature on the growth of B. fulva in apple juices. Agar-added apple juices, adjusted to different levels of soluble solids (12, 20, 25, 35, 45, 55, 70 °Bx) were artificially inoculated with B. fulva spores and incubated at different temperatures (10, 15, 20, 25, 30 °C). Microorganisms’ growth was assessed every day for a total of 3 months. A Gompertz-based model was used in experimental data fit for each soluble solid and temperature condition applied. Kinetic parameters were estimated by nonlinear regression procedures. The soluble solids and temperature effects were thereafter included in the primary Gompertz-based model. The predictive ability of this expression in terms of B. fulva growth was successfully proven for the range of conditions tested.


Apple juice Byssochlamys fulva Soluble solids Temperature 



Teresa R.S. Brandão gratefully acknowledges Fundação para a Ciência e a Tecnologia (FCT) and Fundo Social Europeu (FSE) for financial support through the post-doctoral grant SFRH/BPD/101179/2014. Andréia Tremarin acknowledges the Graduate Program in Food Engineering of the Federal University of Santa Catarina (UFSC) and CAPES-Brazil for financial support. This work was supported by National Funds from FCT—Fundação para a Ciência e a Tecnologia through project UID/Multi/50016/2013.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Andres, S. C., Giannuzzi, L., & Zaritzky, N. E. (2001). Mathematical modelling of microbial growth in packaged refrigerated orange juice treated with chemical preservatives. Journal of Food Science, 66, 724–728.CrossRefGoogle Scholar
  2. Baert, K., Valero, A., De Meulenaer, B., Samapundo, S., Ahmed, M. M., Li, B., Debevere, J., & Devlieghere, F. (2007). Modelling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples. International Journal of Food Microbiology, 118, 139–150.CrossRefGoogle Scholar
  3. Baglioni, F. (1999). Estudo da ocorrência de fungos filamentosos termoresistentes em polpa de tomate envasada assepticamente. Master Thesis. Universidade Estadual de Campinas. Campinas.Google Scholar
  4. Bahçeci, K. S., & Acar, J. (2007). Modeling the combined effects of pH, temperature and ascorbic acid concentration on the heat resistance of Alicyclobacillus acidoterrestris. International Journal of Food Microbiology, 120, 266–273.CrossRefGoogle Scholar
  5. Beuchat, L. R., & Rice, S. L. (1979). Byssochlamys spp. and their importance in processed fruits. Advances in Food Research, 25, 237–289.CrossRefGoogle Scholar
  6. Corradini, M. G., & Peleg, M. (2005). Estimating non-isothermal bacterial growth in foods from isothermal experiments data. Journal of Applied Microbiology, 99, 187–200.CrossRefGoogle Scholar
  7. Dantigny, P., Guilmart, A., & Bensoussan, M. (2005). Basis of predictive mycology. International Journal of Food Microbiology, 100, 187–196.CrossRefGoogle Scholar
  8. Gibson, A. M., & Hocking, A. D. (1997). Advances in the predictive modeling of fungal growth in food. Trends in Food Science and Technology, 8, 353–358.CrossRefGoogle Scholar
  9. Houbraken, J., Samson, R. A., & Frisvad, J. C. (2006). Byssochlamys: significance of heat resistance and mycotoxin production. Advances in Experimental Medicine and Biology, 571, 211–224.CrossRefGoogle Scholar
  10. Ibrahim, G. E., Hassan, I. M., Abd-Elrashid, A. M., El-Massry, K. F., Eh-Ghorab, A. H., Ramadan Manal, M., & Osman, F. (2011). Effect of clouding agents on the quality of apple juice during storage. Food Hydrocolloids, 25, 91–97.CrossRefGoogle Scholar
  11. Juneja, V. K., Melendres, M. V., Huang, L., Gumudavelli, V., Subbiah, J., & Thippareddi, H. (2007). Modeling the effect of temperature on growth of Salmonella in chicken. Food Control, 24, 328–335.Google Scholar
  12. Lahlali, R., Serrhini, M. N., Friel, D., & Jijakli, M. H. (2007). Predictive modelling of temperature and water activity (solutes) on the in vitro radial growth of Botrytis cinerea. International Journal of Food Microbiology, 114, 1–9.CrossRefGoogle Scholar
  13. Longhi, D. A., Tremarin, A., Carciofi, B. A. M., Laurindo, J. B., & Aragão, G. M. F. (2014). Modeling the growth of Byssochlamys fulva on solidified apple juice at different temperatures. Brazilian Archives of Biology and Technology, 57, 971–978.CrossRefGoogle Scholar
  14. Lu, Y., & Foo, L. Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry, 68, 81–85.CrossRefGoogle Scholar
  15. Marín, S., Morales, H., Ramos, A. J., & Sanchis, V. (2008). Fitting of colony diameter and ergosterol as indicators of food borne mould growth to known growth models in solid medium. International Journal of Food Microbiology, 121, 139–149.CrossRefGoogle Scholar
  16. Marín, S., Ramos, A. J., & Sanchis, V. (2005). Comparison of methods for the assessment of growth of food spoilage moulds in solid substrates. International Journal of Food Microbiology, 99, 329–341.CrossRefGoogle Scholar
  17. McKellar, R.C., Lu, X. (2004). Modeling microbial response in food. CRC series in contemporary food science. CRC PRESS Boca Raton, London, New York, Washington.Google Scholar
  18. McMeekin, T. A., & Ross, T. (2002). Predictive microbiology: providing a knowledge-based framework for change management. International Journal of Food Microbiology, 78, 133–153.CrossRefGoogle Scholar
  19. Nielsen, P. V., Beuchat, L. R., & Frisvad, J. C. (1988). Growth and fumitremorgin production by Neosartorya fischeri as affected by temperature, light and water activity. Applied and Environmental Microbiology, 54, 1504–1510.Google Scholar
  20. Oliveira, S. M., Ramos, I. N., Brandão, T. R. S., & Silva, C. L. M. (2015). Effect of air-drying temperature on the quality and bioactive characteristics of dried Galega kale (Brassica oleracea L. var. Acephala). Journal of Food Processing and Preservation, 39, 2485–2496.CrossRefGoogle Scholar
  21. Panagou, E. Z., Tassou, C. C., & Katsaboxakis, C. Z. (2003). Induced lactic acid fermentation of untreated green olives of the Conservolea cultivar by Lactobacillus pentosus. Journal of Food Science Agriculture, 83, 667–674.CrossRefGoogle Scholar
  22. Panagou, E. Z., Chelonas, S., Chatzipavlidis, I., & Nychas, G. J. E. (2010). Modelling the effect of temperature and water activity on the growth rate and growth/no growth interface of Byssochlamys fulva and Byssochlamys nivea. Food Microbiology, 27, 618–627.CrossRefGoogle Scholar
  23. Pitt, J. I., & Hocking, A. D. (1997). Fungi and food spoilage. London: Blackie Academic and Professional.CrossRefGoogle Scholar
  24. Pitt, J. I., & Miscamble, B. F. (1995). Water relations of Aspergillus flavus and closely related species. Journal of Food Protection, 58, 86–90.CrossRefGoogle Scholar
  25. Rajashekhara, E., Suresh, E. R., & Ethiraj, S. (1996). Influence of different heating media on thermal resistance of Neosartorya fischeri isolated from papaya fruit. Journal of Applied Bacteriology, 81, 337–340.CrossRefGoogle Scholar
  26. Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between temperature and growth-rate of bacterial cultures. Journal of Bacteriology, 149, 1–5.Google Scholar
  27. Salomão, B. C. M., Massaguer, P. R., & Aragão, G. M. F. (2008). Isolamento e seleção de fungos filamentosos termorresistentes do processo produtivo de néctar de maçã. Ciência e Tecnologia de Alimentos, 28, 116–121.CrossRefGoogle Scholar
  28. Salomão, B. C. M., Slongo, A. P., & Aragão, G. M. F. (2007). Heat resistance of Neosartorya fischeri in various juices. LWT-Food Science and Technology, 40, 676–689.CrossRefGoogle Scholar
  29. Sant’Ana, A. S., Simas, R. C., Almeida, C. A. A., Cabral, E. C., Rauber, R. H., Mallmann, C. A., Eberlin, M. N., Rosenthal, A., & Massaguer, P. R. (2010). Influence of package, type of apple juice and temperature on the production of patulin by Byssochlamys nivea and Byssochlamys fulva. International Journal of Food Microbiology, 142, 156–163.CrossRefGoogle Scholar
  30. Silva, P. R. S., Tessaro, I. C., & Marczak, L. D. F. (2013). Integrating a kinetic microbial model with a heat transfer model to predict Byssochlamys fulva growth in refrigerated papaya pulp. Journal of Food Engineering, 118, 279–288.CrossRefGoogle Scholar
  31. Smith, D., Stratton, J.E, 2006. Understanding GMPs for sauces and dressings. Published by University of Nebraska-Lincoln Extension. Institute of Agriculture and Natural Resources. Retrieved from:
  32. Taniwaki, M. H., Hocking, A. D., Pitt, J. I., & Fleet, G. H. (2010). Growth and mycotoxin production by fungi in atmospheres containing 80% carbon dioxide and 20% oxygen. International Journal of Food Microbiology, 143, 218–225.CrossRefGoogle Scholar
  33. Taniwaki, M. H., Hocking, A. D., Pitt, J. I., & Fleet, G. H. (2009). Growth and mycotoxin production by food spoilage fungi under high carbon dioxide and low oxygen atmospheres. International Journal of Food Microbiology, 132, 100–108.CrossRefGoogle Scholar
  34. Taniwaki, M. H., Pitt, J. I., Hocking, A. D., & Fleet, G. H. (2006). Comparison of hyphal length, ergosterol, mycelium dry weight and colony diameter for quantifying growth of fungi from foods. In A. D. Hocking, J. I. Pitt, R. A. Samson, & U. Thrane (Eds.), Advances in food mycology (pp. 49–67). New York: Springer.CrossRefGoogle Scholar
  35. Tremarin, A., Longhi, D. A., Salomão, B. C. M., & Aragão, G. M. F. (2015). Modeling the growth of Byssochlamys fulva and Neosartorya fischeri on solidified apple juice by measuring colony diameter and ergosterol content. International Journal of Food Microbiology, 193, 23–28.CrossRefGoogle Scholar
  36. Welke, J. E., Hoeltz, M., Dottoni, H. A., & Noll, I. B. (2009). Ocorrência de fungos termorresistentes em suco de maçã (pp. 78–83). II SSA: Brazilian Journal of Food Technology.Google Scholar
  37. Walpore, R. E., & Myers, R. H. (1993). Probability and statistics for engineers and scientists (fifth ed.). New York: MacMillan Publishing Company.Google Scholar
  38. Zimmermann, M., Miorelli, S., Massaguer, P. R., & Aragão, G. M. F. (2011). Modeling the influence of water activity and ascospore age on the growth of Neosartorya fischeri in pineapple juice. LWT-Food Science and Technology, 44, 239–243.CrossRefGoogle Scholar
  39. Zwietering, M. H., Jongeburger, I., Rombouts, F. M., & Riet, K. V. (1990). Modeling of bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andréia Tremarin
    • 1
  • Gláucia M. F. Aragão
    • 2
  • Beatriz C. M. Salomão
    • 3
  • Teresa R. S. Brandão
    • 1
  • Cristina L. M. Silva
    • 1
  1. 1.CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Centro Regional do Porto da Universidade Católica PortuguesaPortoPortugal
  2. 2.Department of Chemical and Food EngineeringFederal University of Santa Catarina—UFSCFlorianópolisBrazil
  3. 3.Federal University of Rio Grande do Norte—UFRN, Núcleo TecnológicoNatalBrazil

Personalised recommendations