Food and Bioprocess Technology

, Volume 10, Issue 4, pp 674–686 | Cite as

Concentration of Milk and Whey by Membrane Technologies in Alternative Cascade Modes

  • Patricia Meyer
  • Martin Hartinger
  • Sebastian Sigler
  • Ulrich Kulozik
Original Paper

Abstract

The aim of the present study was the evaluation of a membrane cascade comprised of ultrafiltration (UF) in series with reverse osmosis (RO) or nanofiltration (NF) in comparison to a single-stage process. It was found that the upstream UF accelerated the NF and the RO, whereby the effect was more distinct for the NF. The maximum volume reduction ratio (VRR) during skim milk and sweet whey concentration could be increased by 78 and 96%, respectively, by substituting a single NF by an UF-NF cascade. The replacement of a single RO by a UF-RO cascade during concentration of skim milk slightly increased the VRR by 3%. However, the energy demand could be reduced by approximately 16%. For the concentration of sweet whey, it was found that it is more advantageous to conduct the RO at a higher transmembrane pressure (TMP) instead of applying an UF-RO cascade.

Keywords

Skim milk Sweet whey Ultrafiltration Reverse osmosis Nanofiltration Membrane cascade 

Notes

Acknowledgements

We gratefully thank Sabine Husby, Milena Wekel, Michael Reitmaier, and Christian Gottwald for help with data evaluation, useful discussion, and experimental support. This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn). Project AiF 16836 N.

References

  1. Altmann, K., Clawin-Rädecker, I., Hoffmann, W., & Lorenzen, P. C. (2016). Nanofiltration enrichment of milk oligosaccharides (MOS) in relation to process parameters. Food and Bioprocess Technology. doi: 10.1007/s11947-016-1763-5.Google Scholar
  2. Atra, R., Vatai, G., Bekassy-Molnar, E., & Balint, A. (2005). Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. Journal of Food Engineering. doi: 10.1016/j.jfoodeng.2004.04.035.Google Scholar
  3. Bahnasawy, A. H., & Shenana, M. E. (2010). Flux behaviour and energy consumption of ultrafiltration (UF) process of milk. Australian Journal of Agricultural Engineering, 1(2), 54–65.Google Scholar
  4. Bouchoux, A., Debbou, B., Gésan-Guiziou, G., Famelart, M.-H., Doublier, J.-L., & Cabane, B. (2009). Rheology and phase behavior of dense casein micelle dispersions. The Journal of Chemical Physics. doi: 10.1063/1.3245956.Google Scholar
  5. Butylina, S., Luque, S., & Nyström, M. (2006). Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration. Journal of Membrane Science. doi: 10.1016/j.memsci.2006.01.046.Google Scholar
  6. Calín-Sanchez, Á., Figiel, A., Szarycz, M., Lech, K., Nuncio-Jáuregui, N., & Carbonell-Barrachina, Á. A. (2014). Drying kinetics and energy consumption in the dehydration of pomegranate (Punica granatum L.) arils and rind. Food and Bioprocess Technology. doi: 10.1007/s11947-013-1222-5.Google Scholar
  7. Cao, J., Zhang, W., Wu, S., Liu, C., Li, Y., Li, H., et al. (2015). Short communication: effects of nanofiltration and evaporation on the physiochemical properties of milk protein during processing of milk protein concentrate. Journal of Dairy Science. doi: 10.3168/jds.2014-8619.Google Scholar
  8. Cardona, E., Piacentino, A., & Marchese, F. (2005). Energy saving in two-stage reverse osmosis systems coupled with ultrafiltration processes. Desalination. doi: 10.1016/j.desal.2005.03.063.Google Scholar
  9. Cheryan, M., & Kuo, K. P. (1984). Hollow fibers and spiral wound modules for ultrafiltration of whey: energy consumption and performance. Journal of Dairy Science. doi: 10.3168/jds.S0022-0302(84)81455-1.Google Scholar
  10. Cuartas, B. (2004). Separation of mineral salts and lactose solutions through nanofiltration membranes. Food Science and Technology International. doi: 10.1177/1082013204045883.Google Scholar
  11. Dahbi, L., Alexander, M., Trappe, V., Dhont, J. K. G., & Schurtenberger, P. (2010). Rheology and structural arrest of casein suspensions. Journal of Colloid and Interface Science. doi: 10.1016/j.jcis.2009.10.042.Google Scholar
  12. Di Giacomo, G., Del Re, G., & Spera, D. (1996). Milk whey treatment with recovery of valuable products. Desalination. doi: 10.1016/S0011-9164(97)00035-0.Google Scholar
  13. Field, R. W., & Pearce, G. K. (2011). Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Advances in Colloid and Interface Science. doi: 10.1016/j.cis.2010.12.008.Google Scholar
  14. Goulas, A., & Grandison, A. S. (2008). Applications of membrane separation. In T. J. Britz & R. K. Robinson (Eds.), Advanced dairy science and technology (pp. 35–74). Oxford: Blackwell Publishing Ltd..CrossRefGoogle Scholar
  15. Hang, X., Cao, W., Luo, J., Chen, X., Yin, J., Wang, Q., et al. (2015). Resource recovery from soybean soaking water by ultrafiltration and reverse osmosis. Food and Bioprocess Technology. doi: 10.1007/s11947-015-1531-y.Google Scholar
  16. Hiddink, J., de Boer, R., & Nooy, P. F. C. (1980). Reverse osmosis of dairy liquids. Journal of Dairy Science. doi: 10.3168/jds.S0022-0302(80)82915-8.Google Scholar
  17. Jaffrin, M. Y. (2008). Dynamic shear-enhanced membrane filtration: a review of rotating disks, rotating membranes and vibrating systems. Journal of Membrane Science. doi: 10.1016/j.memsci.2008.06.050.Google Scholar
  18. Koros, W. J., Kratochvil, A., Shu, S., & Husain, S. (2009). Energy and environmental issues and impacts of membranes in industry. In E. Drioli & L. Giorno (Eds.), Membrane operations: innovative operations and transformations (pp. 139–165). Weinheim: Wiley.CrossRefGoogle Scholar
  19. Kühnl, W., Piry, A., Kaufmann, V., Grein, T., Ripperger, S., & Kulozik, U. (2010). Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: a surface energy approach. Journal of Membrane Science. doi: 10.1016/j.memsci.2010.02.006.Google Scholar
  20. Kulozik, U., & Kessler, H.-G. (1988). Permeation rate during reverse osmosis of milk influenced by osmotic pressure and deposit formation. Journal of Food Science. doi: 10.1111/j.1365-2621.1988.tb09281.x.Google Scholar
  21. Lipnizki, J., Casani, S., & Jonsson, G. (2005). Optimisation of ultrafiltration of a highly viscous protein solution using spiral-wound modules. Desalination. doi: 10.1016/j.desal.2004.12.027.Google Scholar
  22. McMahon, D. J., & Oommen, B. S. (2013). Casein micelle structure, functions, and interactions. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry (pp. 185–209). New York: Springer.CrossRefGoogle Scholar
  23. Meyer, P., & Kulozik, U. (2016). Impact of protein removal by an upstream ultrafiltration on the reverse osmosis of skim milk and sweet whey. Chemie Ingenieur Technik. doi: 10.1002/cite.201500107.Google Scholar
  24. Meyer, P., Mayer, A., & Kulozik, U. (2015). High concentration of skim milk proteins by ultrafiltration: characterisation of a dynamic membrane system with a rotating membrane in comparison with a spiral wound membrane. International Dairy Journal. doi: 10.1016/j.idairyj.2015.07.010.Google Scholar
  25. Peters, R. H. (2005). Economic aspects of cheese making as influenced by whey processing options. The Fourth IDF Symposium on Cheese: Ripening, Characterization and Technology, doi:  10.1016/j.idairyj.2004.11.009.
  26. Piry, A., Kühnl, W., Grein, T., Tolkach, A., Ripperger, S., & Kulozik, U. (2008). Length dependency of flux and protein permeation in crossflow microfiltration of skimmed milk. Journal of Membrane Science. doi: 10.1016/j.memsci.2008.09.025.Google Scholar
  27. Porter, M. C. (1972). Concentration polarization with membrane ultrafiltration. Industrial & Engineering Chemistry Product Research and Development. doi: 10.1021/i360043a002.Google Scholar
  28. Ramírez, C. A., Patel, M., & Blok, K. (2006). From fluid milk to milk powder: energy use and energy efficiency in the European dairy industry. Energy. doi: 10.1016/j.energy.2005.10.014.Google Scholar
  29. Rektor, A., & Vatai, G. (2004). Membrane filtration of Mozzarella whey. Desalination. doi: 10.1016/S0011-9164(04)00052-9.Google Scholar
  30. Rice, G., Barber, A. R., O’Connor, A. J., Pihlajamaki, A., Nystrom, M., Stevens, G. W., et al. (2011). The influence of dairy salts on nanofiltration membrane charge. Journal of Food Engineering. doi: 10.1016/j.jfoodeng.2011.06.028.Google Scholar
  31. Román, A., Wang, J., Csanádi, J., Hodúr, C., & Vatai, G. (2011). Experimental investigation of the sweet whey concentration by nanofiltration. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0192-0.Google Scholar
  32. Sawyer, L. (2013). β-Lactoglobulin. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry (pp. 211–259). New York: Springer.CrossRefGoogle Scholar
  33. Schmitz-Schug, I. (2014). Improving the nutritional quality of dairy powders—analyzing and modeling lysine loss during spray drying as influenced by drying kinetics, thermal stress, physical state and molecular mobility. München: Verl. Dr. Hut.Google Scholar
  34. Solanki, G., & Rizvi, S. (2001). Physico-chemical properties of skim milk retentates from microfiltration. Journal of Dairy Science. doi: 10.3168/jds.S0022-0302(01)74687-5.Google Scholar
  35. Stabile, R. L. (1983). Economics of reverse osmosis and multistage evaporation for concentrating skim milk from 8.8 to 45% solids. Journal of Dairy Science. doi: 10.3168/jds.S0022-0302(83)82004-9.Google Scholar
  36. Stabile, R., & Roger, N. (1985). Effect of fouling on flux and on energy requirements in reverse osmosis of skim milk. Journal of Dairy Science. doi: 10.3168/jds.S0022-0302(85)81050-X.Google Scholar
  37. Suárez, E., Lobo, A., Álvarez, S., Riera, F. A., & Álvarez, R. (2006). Partial demineralization of whey and milk ultrafiltration permeate by nanofiltration at pilot-plant scale. Desalination. doi: 10.1016/j.desal.2005.12.028.Google Scholar
  38. Suárez, E., Lobo, A., Alvarez, S., Riera, F. A., & Álvarez, R. (2009). Demineralization of whey and milk ultrafiltration permeate by means of nanofiltration. Desalination. doi: 10.1016/j.desal.2007.11.087.Google Scholar
  39. Syrios, A., Faka, M., Grandison, A. S., & Lewis, M. J. (2011). A comparison of reverse osmosis, nanofiltration and ultrafiltration as concentration processes for skim milk prior to drying. International Journal of Dairy Technology. doi: 10.1111/j.1471-0307.2011.00719.x.Google Scholar
  40. Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International. doi: 10.1080/87559120600865164.Google Scholar
  41. Toro-Sierra, J., Tolkach, A., & Kulozik, U. (2013). Fractionation of α-lactalbumin and β-lactoglobulin from whey protein isolate using selective thermal aggregation, an optimized membrane separation procedure and resolubilization techniques at pilot plant scale. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0732-2.Google Scholar
  42. Wiles, P. G., Gray, I. K., & Kissling, R. C. (1998). Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. Journal of AOAC International, 81(3), 620–632.Google Scholar
  43. Wojdalski, J., Dróżdż, B., Grochowicz, J., Magryś, A., & Ekielski, A. (2013). Assessment of energy consumption in a meat-processing plant—a case study. Food and Bioprocess Technology. doi: 10.1007/s11947-012-0924-4.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Patricia Meyer
    • 1
    • 2
  • Martin Hartinger
    • 1
  • Sebastian Sigler
    • 1
  • Ulrich Kulozik
    • 1
    • 2
  1. 1.Chair for Food and Bioprocess TechnologyTechnical University of MunichMunichGermany
  2. 2.ZIEL Institute for Food and HealthTechnical University of MunichMunichGermany

Personalised recommendations