Food and Bioprocess Technology

, Volume 10, Issue 4, pp 650–661 | Cite as

A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma

  • Beyhan Gunaydin Dasan
  • Baran Onal-Ulusoy
  • Joanna Pawlat
  • Jaroslaw Diatczyk
  • Yasin Sen
  • Mehmet Mutlu
Original Paper

Abstract

In this study, a gliding arc discharge (GAD) microplasma system was designed, and its decontamination effect was investigated on stainless steel (SS), silicone (Si), and polyethylene terephthalate (PET) surfaces artificially contaminated with 8.15 ± 0.28 log cfu/mL of Escherichia coli and 6.18 ± 0.21 log cfu/mL of Staphylococcus epidermidis. Each of the contaminated surfaces was treated with high purity air (79% nitrogen and 21% oxygen) or nitrogen plasmas for 1–10 min at varying rates of gas flow. Significant reductions of 3.76 ± 0.28, 3.19 ± 0.31, and 2.95 ± 0.94 log cfu/mL in S. epidermidis, and 2.72 ± 0.82, 4.43 ± 0.14, and 3.18 ± 0.96 log cfu/mL in E. coli on SS, Si, and PET surfaces, respectively, were achieved after 5 min of plasma treatment by using nitrogen as the plasma forming gas (p < 0.05). The temperature changes of each surface during plasma generation were lower than 35 °C and were not affected by the type of plasma forming gas. Additionally, morphological changes in the structure of E. coli and S. epidermidis after GAD plasma treatments were demonstrated using scanning electron microscopy (SEM).

Keywords

Gliding arc discharge microplasma Decontamination E. coli S. epidermidis Stainless steel Silicone Polyethylene terephthalate 

Notes

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project number: MAG 112M740), the Korean Scientific Cooperation Network, the European Research Area (KORANET) Joint Call on Green Technologies project: KORANET (ENV-BIO-GA), and COST Actions (MP1101 and TD1208) and LUT research fund.

We would like to thank Prof. H. Stryczewska for her kind guidance and management of the KORANET ENV-BIO-GA network.

References

  1. Abramzon, N., Joaquin, J. C., Bray, J., & Brelles-Marino, G. (2006). Biofilm destruction by RF high-pressure cold plasma jet. IEEE Transactions on Plasma Science, 34(4), 1304–1309.CrossRefGoogle Scholar
  2. Akdogan, E., & Mutlu, M. (2012). Generation of amphoteric surfaces via glow-discharge technique with single precursor and the behavior of bovine serum albumin at the surface. Colloids and Surfaces B-Biointerfaces, 89, 289–294.CrossRefGoogle Scholar
  3. Atlas, R. M. (1995). Principles of microbiology. St. Louis: Mosby-Year Book, Inc.Google Scholar
  4. Bayliss, D. L., Walsh, J. L., Iza, F., Shama, G., Holah, J., & Kong, M. G. (2012). Complex responses of microorganisms as a community to a flowing atmospheric plasma. Plasma Processes and Polymers, 9(6), 597–611.CrossRefGoogle Scholar
  5. Biederman, H., Boyaci, I. H., Bilkova, P., Slavinska, D., Mutlu, S., Zemek, J., et al. (2001). Characterization of glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies. Journal of Applied Polymer Science, 81(6), 1341–1352.CrossRefGoogle Scholar
  6. Boudam, M. K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., & Massines, F. (2006). Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. Journal of Physics D-Applied Physics, 39(16), 3494–3507.CrossRefGoogle Scholar
  7. Burlica, R., Grim, R. G., Shih, K. Y., Balkwill, D., & Locke, B. R. (2010). Bacteria inactivation using low power pulsed gliding arc discharges with water spray. Plasma Processes and Polymers, 7(8), 640–649.CrossRefGoogle Scholar
  8. Cokeliler, D., Caner, H., Zemek, J., Choukourov, A., Biederman, H., & Mutlu, M. (2007). A plasma polymerization technique to overcome cerebrospinal fluid shunt infections. Biomedical Materials, 2(1), 39–47.CrossRefGoogle Scholar
  9. Dasan, B. G., Boyaci, I. H., & Mutlu, M. (2016a). Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control, 70, 1–8.CrossRefGoogle Scholar
  10. Dasan, B. G., Mutlu, M., & Boyaci, I. H. (2016b). Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. International Journal of Food Microbiology, 216, 50–59.CrossRefGoogle Scholar
  11. Diatczyk, J., Komarzyniec, G., & Stryczewska, H. D. (2011). Power consumption of gliding arc discharge plasma reactor. International journal of Environmental Science and Technology, 5, 12–16.Google Scholar
  12. Fernandez, A., & Thompson, A. (2012). The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International, 45(2), 678–684.CrossRefGoogle Scholar
  13. Fridman, A. (2008). Plasma biology and plasma medicine. In Plasma chemistry (pp. 848–913): Cambrigde University Press.Google Scholar
  14. Graves, D. B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D-Applied Physics, 45(26). doi: 10.1088/0022-3727/45/26/263001.
  15. Gunaydin, B., Sir, N., Kavlak, S., Guner, A., & Mutlu, M. (2010). A new approach for the electrochemical detection of phenolic compounds. Part I: modification of graphite surface by plasma polymerization technique and characterization by Raman spectroscopy. Food and Bioprocess Technology, 3(3), 473–479.CrossRefGoogle Scholar
  16. Guven, B., Basaran-Akgul, N., Temur, E., Tamer, U., & Boyaci, I. H. (2011). SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst, 136(4), 740–748.CrossRefGoogle Scholar
  17. Hertwig, C., Reineke, K., Ehlbeck, J., Knorr, D., & Schlüter, O. (2015). Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control, 55, 221–229.CrossRefGoogle Scholar
  18. Hury, S., Vidal, D. R., Desor, F., Pelletier, J., & Lagarde, T. (1998). A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas. Letters in Applied Microbiology, 26(6), 417–421.CrossRefGoogle Scholar
  19. Ibis, F., Oflaz, H., & Ercan, U. K. (2016). Biofilm inactivation and prevention on common implant material surfaces by non-thermal DBD plasma treatment. Plasma Medicine, 6(1), 33–45.Google Scholar
  20. Kamgang-Youbi, G., Herry, J. M., Meylheuc, T., Brisset, J. L., Bellon-Fontaine, M. N., Doubla, A., et al. (2009). Microbial inactivation using plasma-activated water obtained by gliding electric discharges (vol 48, pg 13, 2009). Letters in Applied Microbiology, 49(2), 292–292.CrossRefGoogle Scholar
  21. Komarzyniec, G., Diatczyk, J., & Stryczewska, H. D. (2006). Arc plasma reactor power system with 5-limb transformer. Journal of Advanced Oxidation Technologies, 9(2), 178–181.CrossRefGoogle Scholar
  22. Korachi, M., & Aslan, N. (2013). Low temperature atmospheric plasma for microbial decontamination. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: science, technology and education (Vol. 1, pp. 453–459). Badajoz: Formatex.Google Scholar
  23. Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Transactions on Plasma Science, 30(4), 1409–1415.CrossRefGoogle Scholar
  24. Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1–3), 81–86.CrossRefGoogle Scholar
  25. Laroussi, M., Mendis, D. A., & Rosenberg, M. (2003). Plasma interaction with microbes. New Journal of Physics, 5, 1–41.CrossRefGoogle Scholar
  26. Laroussi, M., Richardson, J. P., & Dobbs, F. C. Biochemical pathways in the interaction of non-equilibrium plasmas with bacteria. In Proc. Electromed, Portsmouth, VA, 2001 (pp. 33–34.)Google Scholar
  27. Laroussi, M., Sayler, G. S., Glascock, B. B., McCurdy, B., Pearce, M. E., Bright, N. G., et al. (1999). Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure. IEEE Transactions on Plasma Science, 27(1), 34–35.CrossRefGoogle Scholar
  28. Ma, Y., Zhang, G. J., Shi, X. M., Xu, G. M., & Yang, Y. (2008). Chemical mechanisms of bacterial inactivation using dielectric barrier discharge plasma in atmospheric air. IEEE Transactions on Plasma Science, 36(4), 1615–1620.CrossRefGoogle Scholar
  29. Mai-Prochnow, A., Murphy, A. B., McLean, K. M., Kong, M. G., & Ostrikov, K. (2014). Atmospheric pressure plasmas: infection control and bacterial responses. International Journal of Antimicrobial Agents, 43(6), 508–517.CrossRefGoogle Scholar
  30. Menashi, W. P. (1968). Treatment of surfaces. US.Google Scholar
  31. Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3(3–4), 159–170.CrossRefGoogle Scholar
  32. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & Saoudi, B. (2002). Plasma sterilization. Methods mechanisms. Pure and Applied Chemistry, 74(3), 349–358.CrossRefGoogle Scholar
  33. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., & Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226(1–2), 1–21.CrossRefGoogle Scholar
  34. Montie, T. C., Kelly-Wintenberg, K., & Roth, J. R. (2000). An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactions on Plasma Science, 28(1), 41–50.CrossRefGoogle Scholar
  35. Moreau, M., Feuilloley, M. G. J., Orange, N., & Brisset, J. L. (2005). Lethal effect of the gliding arc discharges on Erwinia spp. Journal of Applied Microbiology, 98(5), 1039–1046.CrossRefGoogle Scholar
  36. Moreau, M., Feuilloley, M. G. J., Veron, W., Meylheuc, T., Chevalier, S., Brisset, J. L., et al. (2007). Gliding arc discharge in the potato pathogen Erwinia carotovora subsp atroseptica: mechanism of lethal action and effect on membrane-associated molecules. Applied and Environmental Microbiology, 73(18), 5904–5910.CrossRefGoogle Scholar
  37. Mutlu, M., Mutlu, S., Boyaci, I. H., Alp, B., & Piskin, E. (1998). High-linearity glucose enzyme electrodes for food industries: preparation by a plasma polymerization technique. Polymers in Sensors, 690, 57–65.CrossRefGoogle Scholar
  38. Nehra, V., Kumar, A., & Dwivedi, H. K. (2008). Atmospheric non-thermal plasma sources. International Journal of Engineering (IJE), 2(1), 53–68.Google Scholar
  39. Niemira, B. A., & Sites, J. (2008). Cold plasma inactivates Salmonella stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. Journal of Food Protection, 71(7), 1357–1365.CrossRefGoogle Scholar
  40. Pawlat, J. (2013). Atmospheric pressure plasma jet for decontamination purposes. European Physical Journal-Applied Physics, 61(2). doi: 10.1051/Epjap/2012120431.
  41. Pawlat, J., Samon, R., Stryczewska, H. D., Diatczyk, J., & Gizewski, T. (2013). RF-powered atmospheric pressure plasma jet for surface treatment. European Physical Journal-Applied Physics, 61(2). doi: 10.1051/Epjap/2012120428.
  42. Prysiazhnyi, V., Zaporojchenko, V., Kersten, H., & Cernak, M. (2012). Influence of humidity on atmospheric pressure air plasma treatment of aluminium surfaces. Applied Surface Science, 258(14), 5467–5471.CrossRefGoogle Scholar
  43. Rose, M. J., Aron, S. A., & Janicki, B. W. (1966). Effect of various nonionic surfactants on growth of Escherichia coli. Journal of Bacteriology, 91(5), 1863–1868.Google Scholar
  44. Schluter, O., Ehlbeck, J., Hertel, C., Habermeyer, M., Roth, A., Engel, K. H., et al. (2013). Opinion on the use of plasma processes for treatment of foods*. Molecular Nutrition & Food Research, 57(5), 920–927.CrossRefGoogle Scholar
  45. Schnabel, U., Niquet, R., Krohmann, U., Winter, J., Schlüter, O., Weltmann, K. D., et al. (2012). Decontamination of microbiologically contaminated specimen by direct and indirect plasma treatment. Plasma Processes and Polymers, 9(6), 569–575.CrossRefGoogle Scholar
  46. Sen, Y., Bagci, U., Gulec, H. A., & Mutlu, M. (2012). Modification of food-contacting surfaces by plasma polymerization technique: reducing the Biofouling of microorganisms on stainless steel surface. Food and Bioprocess Technology, 5(1), 166–175.CrossRefGoogle Scholar
  47. Sen, Y., & Mutlu, M. (2013). Sterilization of food contacting surfaces via non-thermal plasma treatment: a model study with Escherichia coli-contaminated stainless steel and polyethylene surfaces. Food and Bioprocess Technology, 6(12), 3295–3304.CrossRefGoogle Scholar
  48. Solon, J. G., & Killeen, S. (2015). Decontamination and sterilization. Surgery (Oxford), 33(11), 572–578.CrossRefGoogle Scholar
  49. Stryczewska, H. D., Diatczyk, J., & Pawlat, J. (2011). Temperature distribution in the gliding arc discharge chamber. Journal of Advanced Oxidation Technologies, 14(2), 276–281.CrossRefGoogle Scholar
  50. Stryczewska, H. D., Jakubowski, T., Kalisiak, S., Gizewski, T., & Pawlat, J. (2013). Power systems of plasma reactors for non-thermal plasma generation. Journal of Advanced Oxidation Technologies, 16(1), 52–62.Google Scholar
  51. Vitrac, H., Guespin-Michel J.F., Brisset J.L. A microbiological investigation of the gliding arc treatment of aqueous media. In Proc. 7th Int. Symp. on High Pressure Low Temperature Plasma Chemistry, HAKONE VII, Greifswald, Germany, 2000 (Vol. 2, pp. 393–397)Google Scholar
  52. von Keudell, A., Awakowicz, P., Benedikt, J., Raballand, V., Yanguas-Gil, A., Opretzka, J., et al. (2010). Inactivation of bacteria and biomolecules by low-pressure plasma discharges. Plasma Processes and Polymers, 7(3–4), 327–352.CrossRefGoogle Scholar
  53. von Woedtke, T., Reuter, S., Masur, K., & Weltmann, K. D. (2013). Plasmas for medicine. Physics Reports-Review Section of Physics Letters, 530(4), 291–320.Google Scholar
  54. Yao, M., Mainelis, G., & An, H. R. (2005). Inactivation of microorganisms using electrostatic fields. Environmental Science & Technology, 39(9), 3338–3344.CrossRefGoogle Scholar
  55. Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Beyhan Gunaydin Dasan
    • 1
  • Baran Onal-Ulusoy
    • 2
  • Joanna Pawlat
    • 3
  • Jaroslaw Diatczyk
    • 3
  • Yasin Sen
    • 4
  • Mehmet Mutlu
    • 5
  1. 1.Department of Food Engineering, Faculty of EngineeringHacettepe UniversityAnkaraTurkey
  2. 2.Department of Food Engineering, Faculty of EngineeringÇankırı Karatekin UniversityÇankırıTurkey
  3. 3.Lublin University of Technology, Institute of Electrical Engineering and Electrotechnologies LublinPoland
  4. 4.Presidency of the Republic of TurkeyAnkaraTurkey
  5. 5.Department of Biomedical Engineering, Faculty of EngineeringTOBB University of Economics and TechnologyAnkaraTurkey

Personalised recommendations