Skip to main content
Log in

Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous food simulant was determined and no significant changes were observed by the addition of carvacrol and OLA to the PLA_PHB formulations. However, the effect of both additives in fatty food simulant can be considered a positive feature for the potential protection of foodstuff with high fat content. Moreover, the antioxidant and antimicrobial activities of the proposed formulations increased by the presence of carvacrol, with enhanced activity against Staphylococcus aureus if compared to Escherichia coli at short and long incubation times. These results underlined the specific antimicrobial properties of these bio-films suggesting their applicability in active food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M. (2014). Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control, 36(1), 1–7.

    Article  CAS  Google Scholar 

  • Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., et al. (2015a). Bio-based PLA_PHB plasticized blend films: processing and structural characterization. LWT - Food Science and Technology, 64(2), 980–988.

    Article  CAS  Google Scholar 

  • Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., et al. (2015b). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583–596.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., Castro-López, M. M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., et al. (2014a). Plasticized poly (lactic acid)–poly (hydroxybutyrate) (PLA–PHB) blends incorporated with Catechin intended for active food-packaging applications. Journal of Agricultural and Food Chemistry, 62(41), 10170–10180.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014b). Ternary PLA–PHB–limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255–270.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. D. C., Valente, A. J. M., & Jiménez, A. (2014c). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121(1), 94–101.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014d). Combined effect of poly (hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. Journal of Polymers and the Environment, 22(4), 460–470.

    Article  CAS  Google Scholar 

  • ASTM (2005). Standard test methods for water vapor transmission of materials. In ASTM E-96/E 96 M-05: American Society for Testing and Materials.

  • Boumail, A., Salmieri, S., Klimas, E., Tawema, P. O., Bouchard, J., & Lacroix, M. (2013). Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose–polycaprolactone composites. Journal of Agricultural and Food Chemistry, 61(4), 811–821.

    Article  CAS  Google Scholar 

  • Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651–658.

    Article  CAS  Google Scholar 

  • Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2014). Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly (lactic acid) plasticizers. Journal of Polymers and the Environment, 22(2), 227–235.

    Article  CAS  Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253.

    Article  CAS  Google Scholar 

  • Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering, 100(2), 239–244.

    Article  CAS  Google Scholar 

  • CLSI (2015). Performance standards for antimicrobial disk susceptibility tests; approved standard_Twelfth edition in CLSI document MO2-A12 Wayne. PA: Clinical and Laboratory Standards Institute.

    Google Scholar 

  • Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78(1–2), 90–103.

    Article  CAS  Google Scholar 

  • Cristani, M., D’Arrigo, M., Mandalari, G., Castelli, F., Sarpietro, M. G., Micieli, D., et al. (2007). Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of Agricultural and Food Chemistry, 55(15), 6300–6308.

    Article  CAS  Google Scholar 

  • Chaiwutthinan, P., Pimpan, V., Chuayjuljit, S., & Leejarkpai, T. (2015). Biodegradable plastics prepared from poly (lactic acid), poly (butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender. Journal of Polymers and the Environment, 23(1), 114–125.

    Article  CAS  Google Scholar 

  • De Silva, R. T., Pasbakhsh, P., Lee, S. M., & Kit, A. Y. (2015). ZnO deposited/encapsulated halloysite-poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied Clay Science, 111, 10–20.

    Article  CAS  Google Scholar 

  • Delgado, P. A., & Hillmyer, M. A. (2014). Combining block copolymers and hydrogen bonding for poly (lactide) toughening. RSC Advances, 4(26), 13266–13273.

    Article  CAS  Google Scholar 

  • Di Pasqua, R., Hoskins, N., Betts, G., & Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, Cinnamaldehyde, and eugenol in the growing media. Journal of Agricultural and Food Chemistry, 54(7), 2745–2749.

    Article  CAS  Google Scholar 

  • EC (2002). Commission Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with foodstuffs. In Official Journal of European Communities.

  • EC (2011). Commission Regulation EU N° 10/2011 on plastic materials and articles intended to come into contact with food. In Official Journal of European Communities.

  • Erdohan, Z. Ö., Çam, B., & Turhan, K. N. (2013). Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering, 119(2), 308–315.

    Article  Google Scholar 

  • Fiori, S., & Ara, P. (2009). Method for plasticizing lactic acid polymers. World Patent.

  • Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J. M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948–956.

    Article  CAS  Google Scholar 

  • Guarda, A., Rubilar, J. F., Miltz, J., & Galotto, M. J. (2011). The antimicrobial activity of microencapsulated thymol and carvacrol. International Journal of Food Microbiology, 146(2), 144–150.

    Article  CAS  Google Scholar 

  • Hakkarainen, M., Karlsson, S., & Albertsson, A. C. (2000). Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms—low molecular weight products and matrix changes. Polymer, 41(7), 2331–2338.

    Article  CAS  Google Scholar 

  • Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., et al. (1998). Characterization of the action of selected essential oil components on gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46(9), 3590–3595.

    Article  CAS  Google Scholar 

  • Hwang, S. W., Shim, J. K., Selke, S. E. M., Soto-Valdez, H., Matuana, L., Rubino, M., et al. (2012). Poly (L-lactic acid) with added α-tocopherol and resveratrol: optical, physical, thermal and mechanical properties. Polymer International, 61(3), 418–425.

    Article  CAS  Google Scholar 

  • ISO (2004). Plastics. Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test. In ISO 20200:2004: International Organization for Standardization.

  • Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., & Desobry, S. (2012). Structural, mechanical and barrier properties of active PLA–antioxidant films. Journal of Food Engineering, 110(3), 380–389.

    Article  CAS  Google Scholar 

  • Kunioka, M., Ninomiya, F., & Funabashi, M. (2006). Biodegradation of poly (lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods. Polymer Degradation and Stability, 91(9), 1919–1928.

    Article  CAS  Google Scholar 

  • La Storia, A., Ercolini, D., Marinello, F., Di Pasqua, R., Villani, F., & Mauriello, G. (2011). Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Research in Microbiology, 162(2), 164–172.

    Article  CAS  Google Scholar 

  • Lambert, R. J. W., Skandamis, P. N., Coote, P. J., & Nychas, G. J. E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3), 453–462.

    Article  CAS  Google Scholar 

  • López-Mata, M. A., Ruiz-Cruz, S., Silva-Beltrán, N. P., Ornelas-Paz, J. D. J., Zamudio-Flores, P. B., & Burruel-Ibarra, S. E. (2013). Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules, 18(11), 13735–13753.

    Article  Google Scholar 

  • López, P., Sánchez, C., Batlle, R., & Nerín, C. (2007). Development of flexible antimicrobial films using essential oils as active agents. Journal of Agricultural and Food Chemistry, 55(21), 8814–8824.

    Article  Google Scholar 

  • Martino, V. P., Jiménez, A., & Ruseckaite, R. A. (2009). Processing and characterization of poly (lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science, 112(4), 2010–2018.

    Article  CAS  Google Scholar 

  • Mastelić, J., Jerković, I., Blažević, I., Poljak-Blaži, M., Borović, S., Ivančić-Baće, I., et al. (2008). Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. Journal of Agricultural and Food Chemistry, 56(11), 3989–3996.

    Article  Google Scholar 

  • Nostro, A., & Papalia, T. (2012). Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Patents on Anti-Infective Drug Discovery, 7(1), 28–35.

    Article  CAS  Google Scholar 

  • Ramos, M., Beltrán, A., Peltzer, M., Valente, A. J. M., & Garrigós, M. d. C. (2014a). Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT - Food Science and Technology, 58(2), 470–477.

    Article  CAS  Google Scholar 

  • Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513–519.

    Article  CAS  Google Scholar 

  • Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2014b). Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149–155.

    Article  CAS  Google Scholar 

  • Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M., Ibrahim, H. M. M., Miao, C., et al. (2014). Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose, 21(3), 1837–1850.

    Article  CAS  Google Scholar 

  • Sanchez-Garcia, M. D., Ocio, M. J., Gimenez, E., & Lagaron, J. M. (2008). Novel polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. Journal of Plastic Film and Sheeting, 24(3–4), 239–251.

    Article  CAS  Google Scholar 

  • Suppakul, P., Sonneveld, K., Bigger, S. W., & Miltz, J. (2011). Diffusion of linalool and methylchavicol from polyethylene-based antimicrobial packaging films. LWT - Food Science and Technology, 44(9), 1888–1893.

    Article  CAS  Google Scholar 

  • Ultee, A., Kets, E. P. W., & Smid, E. J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen. Applied and Environmental Microbiology, 65(10), 4606–4610.

    CAS  Google Scholar 

  • Wu, Y., Luo, Y., & Wang, Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT - Food Science and Technology, 48(2), 283–290.

    Article  Google Scholar 

  • Xu, J., Zhou, F., Ji, B. P., Pei, R. S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3), 174–179.

    Article  CAS  Google Scholar 

  • Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67–79.

    Article  Google Scholar 

  • Zygoura, P. D., Paleologos, E. K., & Kontominas, M. G. (2011). Changes in the specific migration characteristics of packaging–food simulant combinations caused by ionizing radiation: effect of food simulant. Radiation Physics and Chemistry, 80(8), 902–910.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the SAMSUNG GRO PROGRAMME 2012 and the Spanish Ministry of Economy and Competitiveness (Ref. MAT2014-59242-C2-2-R and MAT2014-55778-REDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Burgos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgos, N., Armentano, I., Fortunati, E. et al. Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food Bioprocess Technol 10, 770–780 (2017). https://doi.org/10.1007/s11947-016-1846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1846-3

Keywords

Navigation