Food and Bioprocess Technology

, Volume 10, Issue 4, pp 770–780 | Cite as

Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

  • Nuria Burgos
  • Ilaria Armentano
  • Elena Fortunati
  • Franco Dominici
  • Francesca Luzi
  • Stefano Fiori
  • Francesco Cristofaro
  • Livia Visai
  • Alfonso Jiménez
  • José M. Kenny
Original Paper


Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous food simulant was determined and no significant changes were observed by the addition of carvacrol and OLA to the PLA_PHB formulations. However, the effect of both additives in fatty food simulant can be considered a positive feature for the potential protection of foodstuff with high fat content. Moreover, the antioxidant and antimicrobial activities of the proposed formulations increased by the presence of carvacrol, with enhanced activity against Staphylococcus aureus if compared to Escherichia coli at short and long incubation times. These results underlined the specific antimicrobial properties of these bio-films suggesting their applicability in active food packaging.


Bio-films Active packaging Lactic acid oligomers Carvacrol Migration Antibacterial properties 



This work was funded by the SAMSUNG GRO PROGRAMME 2012 and the Spanish Ministry of Economy and Competitiveness (Ref. MAT2014-59242-C2-2-R and MAT2014-55778-REDT).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M. (2014). Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control, 36(1), 1–7.CrossRefGoogle Scholar
  2. Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., et al. (2015a). Bio-based PLA_PHB plasticized blend films: processing and structural characterization. LWT - Food Science and Technology, 64(2), 980–988.CrossRefGoogle Scholar
  3. Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., et al. (2015b). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583–596.CrossRefGoogle Scholar
  4. Arrieta, M. P., Castro-López, M. M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., et al. (2014a). Plasticized poly (lactic acid)–poly (hydroxybutyrate) (PLA–PHB) blends incorporated with Catechin intended for active food-packaging applications. Journal of Agricultural and Food Chemistry, 62(41), 10170–10180.CrossRefGoogle Scholar
  5. Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014b). Ternary PLA–PHB–limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255–270.CrossRefGoogle Scholar
  6. Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. D. C., Valente, A. J. M., & Jiménez, A. (2014c). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121(1), 94–101.CrossRefGoogle Scholar
  7. Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014d). Combined effect of poly (hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. Journal of Polymers and the Environment, 22(4), 460–470.CrossRefGoogle Scholar
  8. ASTM (2005). Standard test methods for water vapor transmission of materials. In ASTM E-96/E 96 M-05: American Society for Testing and Materials.Google Scholar
  9. Boumail, A., Salmieri, S., Klimas, E., Tawema, P. O., Bouchard, J., & Lacroix, M. (2013). Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose–polycaprolactone composites. Journal of Agricultural and Food Chemistry, 61(4), 811–821.CrossRefGoogle Scholar
  10. Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651–658.CrossRefGoogle Scholar
  11. Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2014). Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly (lactic acid) plasticizers. Journal of Polymers and the Environment, 22(2), 227–235.CrossRefGoogle Scholar
  12. Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253.CrossRefGoogle Scholar
  13. Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering, 100(2), 239–244.CrossRefGoogle Scholar
  14. CLSI (2015). Performance standards for antimicrobial disk susceptibility tests; approved standard_Twelfth edition in CLSI document MO2-A12 Wayne. PA: Clinical and Laboratory Standards Institute.Google Scholar
  15. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78(1–2), 90–103.CrossRefGoogle Scholar
  16. Cristani, M., D’Arrigo, M., Mandalari, G., Castelli, F., Sarpietro, M. G., Micieli, D., et al. (2007). Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of Agricultural and Food Chemistry, 55(15), 6300–6308.CrossRefGoogle Scholar
  17. Chaiwutthinan, P., Pimpan, V., Chuayjuljit, S., & Leejarkpai, T. (2015). Biodegradable plastics prepared from poly (lactic acid), poly (butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender. Journal of Polymers and the Environment, 23(1), 114–125.CrossRefGoogle Scholar
  18. De Silva, R. T., Pasbakhsh, P., Lee, S. M., & Kit, A. Y. (2015). ZnO deposited/encapsulated halloysite-poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied Clay Science, 111, 10–20.CrossRefGoogle Scholar
  19. Delgado, P. A., & Hillmyer, M. A. (2014). Combining block copolymers and hydrogen bonding for poly (lactide) toughening. RSC Advances, 4(26), 13266–13273.CrossRefGoogle Scholar
  20. Di Pasqua, R., Hoskins, N., Betts, G., & Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, Cinnamaldehyde, and eugenol in the growing media. Journal of Agricultural and Food Chemistry, 54(7), 2745–2749.CrossRefGoogle Scholar
  21. EC (2002). Commission Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with foodstuffs. In Official Journal of European Communities.Google Scholar
  22. EC (2011). Commission Regulation EU N° 10/2011 on plastic materials and articles intended to come into contact with food. In Official Journal of European Communities.Google Scholar
  23. Erdohan, Z. Ö., Çam, B., & Turhan, K. N. (2013). Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering, 119(2), 308–315.CrossRefGoogle Scholar
  24. Fiori, S., & Ara, P. (2009). Method for plasticizing lactic acid polymers. World Patent.Google Scholar
  25. Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J. M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948–956.CrossRefGoogle Scholar
  26. Guarda, A., Rubilar, J. F., Miltz, J., & Galotto, M. J. (2011). The antimicrobial activity of microencapsulated thymol and carvacrol. International Journal of Food Microbiology, 146(2), 144–150.CrossRefGoogle Scholar
  27. Hakkarainen, M., Karlsson, S., & Albertsson, A. C. (2000). Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms—low molecular weight products and matrix changes. Polymer, 41(7), 2331–2338.CrossRefGoogle Scholar
  28. Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., et al. (1998). Characterization of the action of selected essential oil components on gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46(9), 3590–3595.CrossRefGoogle Scholar
  29. Hwang, S. W., Shim, J. K., Selke, S. E. M., Soto-Valdez, H., Matuana, L., Rubino, M., et al. (2012). Poly (L-lactic acid) with added α-tocopherol and resveratrol: optical, physical, thermal and mechanical properties. Polymer International, 61(3), 418–425.CrossRefGoogle Scholar
  30. ISO (2004). Plastics. Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test. In ISO 20200:2004: International Organization for Standardization.Google Scholar
  31. Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., & Desobry, S. (2012). Structural, mechanical and barrier properties of active PLA–antioxidant films. Journal of Food Engineering, 110(3), 380–389.CrossRefGoogle Scholar
  32. Kunioka, M., Ninomiya, F., & Funabashi, M. (2006). Biodegradation of poly (lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods. Polymer Degradation and Stability, 91(9), 1919–1928.CrossRefGoogle Scholar
  33. La Storia, A., Ercolini, D., Marinello, F., Di Pasqua, R., Villani, F., & Mauriello, G. (2011). Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Research in Microbiology, 162(2), 164–172.CrossRefGoogle Scholar
  34. Lambert, R. J. W., Skandamis, P. N., Coote, P. J., & Nychas, G. J. E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3), 453–462.CrossRefGoogle Scholar
  35. López-Mata, M. A., Ruiz-Cruz, S., Silva-Beltrán, N. P., Ornelas-Paz, J. D. J., Zamudio-Flores, P. B., & Burruel-Ibarra, S. E. (2013). Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules, 18(11), 13735–13753.CrossRefGoogle Scholar
  36. López, P., Sánchez, C., Batlle, R., & Nerín, C. (2007). Development of flexible antimicrobial films using essential oils as active agents. Journal of Agricultural and Food Chemistry, 55(21), 8814–8824.CrossRefGoogle Scholar
  37. Martino, V. P., Jiménez, A., & Ruseckaite, R. A. (2009). Processing and characterization of poly (lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science, 112(4), 2010–2018.CrossRefGoogle Scholar
  38. Mastelić, J., Jerković, I., Blažević, I., Poljak-Blaži, M., Borović, S., Ivančić-Baće, I., et al. (2008). Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. Journal of Agricultural and Food Chemistry, 56(11), 3989–3996.CrossRefGoogle Scholar
  39. Nostro, A., & Papalia, T. (2012). Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Patents on Anti-Infective Drug Discovery, 7(1), 28–35.CrossRefGoogle Scholar
  40. Ramos, M., Beltrán, A., Peltzer, M., Valente, A. J. M., & Garrigós, M. d. C. (2014a). Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT - Food Science and Technology, 58(2), 470–477.CrossRefGoogle Scholar
  41. Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513–519.CrossRefGoogle Scholar
  42. Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2014b). Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149–155.CrossRefGoogle Scholar
  43. Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M., Ibrahim, H. M. M., Miao, C., et al. (2014). Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose, 21(3), 1837–1850.CrossRefGoogle Scholar
  44. Sanchez-Garcia, M. D., Ocio, M. J., Gimenez, E., & Lagaron, J. M. (2008). Novel polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. Journal of Plastic Film and Sheeting, 24(3–4), 239–251.CrossRefGoogle Scholar
  45. Suppakul, P., Sonneveld, K., Bigger, S. W., & Miltz, J. (2011). Diffusion of linalool and methylchavicol from polyethylene-based antimicrobial packaging films. LWT - Food Science and Technology, 44(9), 1888–1893.CrossRefGoogle Scholar
  46. Ultee, A., Kets, E. P. W., & Smid, E. J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen. Applied and Environmental Microbiology, 65(10), 4606–4610.Google Scholar
  47. Wu, Y., Luo, Y., & Wang, Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT - Food Science and Technology, 48(2), 283–290.CrossRefGoogle Scholar
  48. Xu, J., Zhou, F., Ji, B. P., Pei, R. S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3), 174–179.CrossRefGoogle Scholar
  49. Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67–79.CrossRefGoogle Scholar
  50. Zygoura, P. D., Paleologos, E. K., & Kontominas, M. G. (2011). Changes in the specific migration characteristics of packaging–food simulant combinations caused by ionizing radiation: effect of food simulant. Radiation Physics and Chemistry, 80(8), 902–910.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nuria Burgos
    • 1
  • Ilaria Armentano
    • 2
  • Elena Fortunati
    • 3
  • Franco Dominici
    • 3
  • Francesca Luzi
    • 3
  • Stefano Fiori
    • 4
  • Francesco Cristofaro
    • 5
    • 6
  • Livia Visai
    • 5
    • 6
  • Alfonso Jiménez
    • 1
  • José M. Kenny
    • 3
  1. 1.Department of Analytical Chemistry, Nutrition and Food SciencesUniversity of AlicanteSan Vicente del RaspeigSpain
  2. 2.Department of Ecological and Biological Sciences (DEB)Tuscia UniversityViterboItaly
  3. 3.Civil and Environmental Engineering Department, UdR INSTMUniversity of PerugiaTerniItaly
  4. 4.Condensia QuímicaBarcelonaSpain
  5. 5.Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTMUniversity of PaviaPaviaItaly
  6. 6.Department of Occupational Medicine, Toxicology and Environmental Risks, Instituti Clinici Scientifici Maugeri S.p.A, IRCCSPaviaItaly

Personalised recommendations