Food and Bioprocess Technology

, Volume 10, Issue 4, pp 639–649 | Cite as

High Hydrostatic Pressure and Temperature Applied to Preserve the Antioxidant Compounds of Mango Pulp (Mangifera indica L.)

  • Mariana Camiro-Cabrera
  • Zamantha Escobedo-Avellaneda
  • Blanca Salinas-Roca
  • Olga Martín-Belloso
  • Jorge Welti-Chanes
Original Paper


High hydrostatic pressure (HHP) processes combined with moderate heating can be used to preserve foods while maintaining general quality. The effect of these conditions on the total phenolic (TP), vitamin C (L-ascorbic acid (AA)), carotenoids, and antioxidant activity (AOA) of mango purees was evaluated. Purees were processed at 400–550 MPa/34 and 59 °C at different holding times. Unprocessed puree had TP of 26.6 mg gallic acid/100 g, 21.1 mg L-ascorbic acid/100 g, AOA of 885 μmol trolox equivalents/100 g, and total carotenoids of 6.0 mg β-carotene/100 g. HHP treatments increased the phenolic concentrations up to 34% (550 MPa/59 °C/2 and 4 min) compared with the initial content, probably due to improvement of their extraction. AA content was reduced significantly (10–45%) after all HHP processes performed at 59 °C, while at 34 °C, they were diminished only after 8 and 16 min of treatment (13–26%). At 34 °C and lower times, AA concentration increased in average 18%. Total carotenoid retention in HHP-treated samples varies from 77 to 98%, being the higher the temperature the lower the retention observed. The concentration of most individual carotenoids remains unchanged, but violaxanthin content was reduced (21–26%) and 9-cis-violaxanthin was increased by about 10%. The AOA was also increased (up to 39%) at some processing conditions. A linear correlation between the TP and AOA was obtained. HHP at 550 MPa combined with moderate temperature (34 °C) at processing times up to 8 min is recommended for the maximum retention of the antioxidant compounds of mango puree.


Mango High hydrostatic pressures Vitamin C Carotenoids Antioxidant activity Phenolics 



Authors acknowledge the financial support from Tecnologico de Monterrey (Research Chair Funds CAT 200 and CDB081) and CONACYT-SEP (Research Project 101700 and Scholarship Program).


  1. AOAC. (1990a). Official method 934.06. Moisture in dried fruits. In Official methods of analysis, Vol. 2, Food composition, additives, natural contaminants (15th ed.) (pp. 912). Arlington, VA, USA: Association of Official Analytical Chemists.Google Scholar
  2. AOAC (1990b). Official method 942.15. Acidity (titratable) of fruit products. Glass electrode method. In Official methods of analysis, Vol. 2, Food composition, additives, natural contaminants (15th ed.) (pp. 918). Arlington, VA, USA: Association of Official Analytical Chemists.Google Scholar
  3. Barba, F. J., Esteve, M. J., & Frigola, A. (2010). Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage. Journal of Agricultural and Food Chemistry, 58, 10070–10075.CrossRefGoogle Scholar
  4. Barba, F. J., Jäger, H., Meneses, N., Esteve, M. J., Frígola, A., & Knorr, D. (2012). Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innovative Food Science & Emerging Technpalafoxlogies, 14, 18–24.CrossRefGoogle Scholar
  5. Brecht, J. K., Sargent, S. A., Kader, A. A., Mitcham, E. J., Maul, F., Brecht, P. E., & Menocal, O. (2014). Manual de prácticas para el manejo poscosecha del mango. Orlando: UF IFAS Extension.Google Scholar
  6. Castro, S. M., Saraiva, J. A., Domingues, F. M. J., & Delgadillo, I. (2011). Effect of mild pressure treatments and thermal blanching on yellow bell peppers (Capsicum annuum L.). Lebensmittel Wissenschaft und Technologie, 44, 363–369.CrossRefGoogle Scholar
  7. Castro, S. M., Saraiva, J. A., Lopes-da-Silva, J. A., Delgadillo, I., van Loey, A., Smout, C., & Hendrickx, M. (2008). Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chemistry, 107, 1436–1449.CrossRefGoogle Scholar
  8. Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J. A., & Welti-Chanes, J. (2014). Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. Journal of Functional Foods, 6, 470–481.CrossRefGoogle Scholar
  9. Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J. A., & Welti-Chanes, J. (2015). High hydrostatic pressure combined with mild temperature for the preservation of comminuted orange: effects on functional compounds and antioxidant activity. Food and Bioprocess Technology: An International Journal, 8(5), 1032–1044.CrossRefGoogle Scholar
  10. Ferrari, G., Maresca, P., & Ciccarone, R. (2010). The application of high hydrostatic pressure for the stabilization of functional foods: pomegranate juice. Journal of Food Engineering, 100(2), 245–253.CrossRefGoogle Scholar
  11. Hernández-Brenes, C., Ramos-Parra, P. A., Jacobo-Velázquez, D. A., Villarreal-Lara, R., & Díaz-De la Garza, R. I. (2013). High hydrostatic pressure processing as a strategy to increase carotenoid contents of tropical fruits. In B. S. Patil, G. K. Jayaprakasha, C. Osorio Roa, & K. Mahattanatawee (Eds.), Tropical and subtropical fruits: flavors, color, and health benefits (pp. 29–42). American Chemical Society.Google Scholar
  12. Houška, M., Strohalm, J., Kocurová, K., Totušek, J., Lefnerová, D., Tříska, J., Vrchotová, N., Fiedrleová, V., Holasova, M., Gabrovská, D., & Paulíčková, I. (2006). High pressure and foods fruit/vegetable juices. Journal of Food Engineering, 77(3), 386–398.CrossRefGoogle Scholar
  13. Jayachandran, L. E., Chakraborty, S., & Rao, P. S. (2015). Effect of high pressure processing on physicochemical properties and bioactive compounds in litchi based mixed fruit beverage. Innovative Food Science & Emerging Technologies, 28, 1–9.CrossRefGoogle Scholar
  14. Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science & Emerging Technologies, 22, 40–50.CrossRefGoogle Scholar
  15. Kim, Y., Lounds-Singleton, A. J., & Talcott, S. T. (2009). Antioxidant phytochemical and quality changes associated with hot water immersion treatment of mangoes (Mangifera indica L.). Food Chemistry, 115(3), 989–993.CrossRefGoogle Scholar
  16. Krebbers, B., Matser, A., Koets, M., Bartels, P. V., & van den Berg, R. (2002). High pressure-temperature processing as an alternative for preserving basil. High Pressure Research, 22, 711–714.CrossRefGoogle Scholar
  17. Ma, Y., Xu, L., Shangguan, L., & Li, X. (2009). Effect of ultra-high pressure physical energy on carotenoid isomers in carrot juice. Food Science, 29(10), 105–108.Google Scholar
  18. Mahattanatawee, K., Manthey, J., Luzio, G., Talcott, S. T., Goodner, K., & Baldwin, E. A. (2006). Total antioxidant activity and fiber content of select Florida-grown tropical fruits. Journal of Agricultural and Food Chemistry, 54, 7355–7363.CrossRefGoogle Scholar
  19. Manthey, J. A., & Perkins-Veazie, P. (2009). Influences of harvest date and location on the levels of beta-carotene, ascorbic acid, total phenols, the in vitro antioxidant capacity, and phenolic profiles of five commercial varieties of mango (Mangifera indica L.). Journal of Agricultural and Food Chemistry, 57(22), 10825–10830.CrossRefGoogle Scholar
  20. Mercadante, A. Z., & Rodriguez-Amaya, D. B. (2001). Confirmação da identidade da alfa-criptoxantina e incidencia de carotenóides minoritários provitamínicos a em verduras folhosas verdes. Ciencia e Tecnologia de Alimentos, 21(2), 216–222.Google Scholar
  21. Mercadante, A. Z., Rodriguez-Amaya, D. B., & Britton, G. (1997). HPLC and mass spectrometric analysis of carotenoids from mango. Journal of Agricultural and Food Chemistry, 45(1), 120–123.CrossRefGoogle Scholar
  22. Mesa-Vanegas, M., Gaviria, C., Cardona, F., Sáez-Vega, J., Trujillo, S. B., & Rojano, B. (2010). Antioxidant activity and total phenols content from some species of Calophyllum genus. Revista Cubana de Plantas Medicinales, 15(2), 13–26.Google Scholar
  23. Liu, F., Wang, Y., Li, R., Bi, X., & Liao, X. (2014). Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innovative Food Science & Emerging Technologies, 21, 35–43.CrossRefGoogle Scholar
  24. Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends in Food Science & Technology, 19(6), 320–328.CrossRefGoogle Scholar
  25. Oliveira, D. D. S., Lobato, A. L., Ribeiro, S. M. R., Santana, A. M. C., Chaves, J. B. P., & Pinheiro-Sant’Ana, H. M. (2010). Carotenoids and vitamin C during handling and distribution of guava (Psidium guajava L.), mango (Mangifera indica L.), and papaya (Carica papaya L.) at commercial restaurants. Journal of Agricultural and Food Chemistry, 58(10), 6166–6172.CrossRefGoogle Scholar
  26. Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science, 76(1), R6–R15.CrossRefGoogle Scholar
  27. Pott, I., Marx, M., Neidhart, S., Mühlbauer, W., & Carle, R. (2003). Quantitative determination of beta-carotene stereoisomers in fresh, dried, and solar-dried mangoes (Mangifera indica L.). Journal of Agricultural and Food Chemistry, 51(16), 4527–4531.CrossRefGoogle Scholar
  28. Queiroz, C., Moreira, C. F. F., Lavinas, F. C., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2010). Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice. High Pressure Research, 30(4), 507–513.CrossRefGoogle Scholar
  29. Quirós-Sauceda, A. E., Palafox-Carlos, H., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Bello-Perez, L. A., Álvarez-Parrilla, E., de la Rosa, L. A., González-Córdova, A. F., & González-Aguilar, G. A. (2014). Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function, 5(6), 1063–1072.CrossRefGoogle Scholar
  30. Saldo, J., Suárez-Jacobo, Á., Gervilla, R., Guamis, B., & Roig-Sagués, A. X. (2009). Use of ultra-high-pressure homogenization to preserve apple juice without heat damage. High Pressure Research, 29(1), 52–56.CrossRefGoogle Scholar
  31. Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2006). Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. Journal of the Science of Food and Agriculture, 86(2), 171–179.CrossRefGoogle Scholar
  32. Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2014). High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Engineering Reviews, 6(3), 56–88.CrossRefGoogle Scholar
  33. Sogi, D. S., Siddiq, M., Roidoung, S., & Dolan, K. D. (2012). Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment. Journal of Food Science, 77(11), C1197–C1202.CrossRefGoogle Scholar
  34. Tejada-Ortigoza, V., Escobedo-Avellaneda, Z., Valdez-Fragoso, A., Mújica-Paz, H., & Welti-Chanes, J. (2015). Combined effect of high hydrostatic pressure and mild heat treatments on pectin methylesterase (PME) inactivation in comminuted orange. Journal of the Science of Food and Agriculture, 95(12), 2438–2444.CrossRefGoogle Scholar
  35. Zapata, S., Piedrahita, A. M., & Rojano, B. (2014). Capacidad atrapadora de radicales oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspectivas en Nutrición Humana, 16, 25–36.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mariana Camiro-Cabrera
    • 1
  • Zamantha Escobedo-Avellaneda
    • 1
  • Blanca Salinas-Roca
    • 2
  • Olga Martín-Belloso
    • 2
  • Jorge Welti-Chanes
    • 1
  1. 1.Tecnologico de Monterrey, Escuela de Ingeniería y CienciasCentro de Biotecnología FEMSAMonterreyMexico
  2. 2.Food Science and TechnologyUniversity of LleidaLleidaSpain

Personalised recommendations